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Welcome to module 34 of Point Set Topology Part-I. Last time, we introduced the notion of

connectedness, motivating it from the notion of path connectedness and then, relating it to

intermediate value theorem, least upper bound property etcetera. So, we will continue now

the study of connectedness.

So, here is a simple theorem which says that if you have a continuous function from one

space to another space, it will take a connected or a path connected subspace connected or a

path connected space accordingly. So, it is actually two different statements here.

By taking a subset  which is say connected or path connected and restricting the function to

that  and to  the domain   on the codomain  ,  we can as  well  assume that   itself  is

surjective and make the hypothesis that   itself is connected or path connected. So, let us

first look at when  is connected, I want to show that  is connected ok. 



So, take a separation of ,  equal to , it pulls back to a separation of  via  so, all that

you have to do is   that will  be separation of  ,  pure set theoretic claim.

Continuity of  is used only to see that these two sets,  and  are closed. Rest of

the things, disjointness, union is the whole of  etc are are just pure set theoretic ok? So, that

proves that image of a connected space is connected.

Now, let us assume  is path connected and we want to show that  is path connected, but

remember now, I have assumed  is surjective so, given any two points say here in ,  and

 whatever, they are  and  for some points  and  in  ok? But  and  inside  can

be joined by a path  is a path in  joining  and . Then,  will be a path joining 

and . that shows that  is path connected.
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So, we had defined long back that a property of topological spaces is said to be topological

property or a topological invariant if the following holds: whenever  is true for a space, it

must be true for all spaces  which are homeomorphic to . So, that was the definition 1.59,

I am just recalling it ok.
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So, because image of a connected set is connected automatically under a homeomorphism,

image  of  a  connected  set  will  be  connected  because  homeomorphisms  are  are  onto.  So,

homeomorphism preserves connectivity, similarly, it preserves path connectivity also. These

two are topological invariants ok?

Because of this property, what happens is whenever you are studying some connected spaces

and so on, you can actually assume the whole space is connected concentrate on a connected

part of it ok and then discuss the whole thing because once we have that continuous functions

from there, we will always be inside the same connected set, after all we are all the time

studying  continuous  functions.  So,  lot  of  such  discussions  can  be  isolated  just  around  a

connected set. So, this leads us to the notion of what is called connected components.
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Suppose  is a connected subset of  and  has a separation, then either  is inside  or it is

inside . So, this is the property of a connected set otherwise what happens? You have to just

take  the  restriction  to   of  the  separation.   contained  inside  ,  ,   that  is

separation of . Only thing is you do not know whether each of these subsets are nonempty,

 will be nonempty if   is not contained inside  and vice versa if it is not contained

inside , then this will be nonempty.

So,  if  both  of  them are  nonempty,   that  will  be  a  contradiction  to  the  fact  that  is   is

connected. So, one of them must be empty which means  is contained inside the other one.
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Let us understand one more thing about this connectivity. Suppose you have  as a union of

two subspaces which are both connected and the intersection is nonempty, then   itself is

connected. Later on we will generalize this one ok.

So, this is just a trick using the previous lemma. Suppose this union has a separation ok? I

have assumed that   is nonempty so, take   to be a point in the intersection, then 

being a single point, it must be either inside  or  and not both. You can assume that it is

inside , by changing the notation if you need.

But  then,  from  the  above  lemma,  it  follows  that  since   contains   right  and   is

connected, ok? so,  must be contained completely inside . It is contained in  or  is the

previous lemma, but since already x is inside , it is a common point with  so, it follows

that  is inside . The same argument for  also. So, both 's are inside . That means, 

is empty. So, that is a contradiction which just means that there is no separation of   and

hence  is connected.

So,  you  can  see  that  already  this  can  be  very  easily  to  generalized  for  any  family  ,

 etc not necessarily even finite ok. Here, I have not used any indexing set in the



argument. This can be just arbitrary indexing set, it will be applicable for all. That is just an

observation you can make once you have understood for  and .
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So,  now  we  make  a  definition  motivated  by  especially  this  lemma  ok?  And  then,  this

theorem here  ok.  Let   be  a  statement  about  subsets  of  a  given  set  ,  this  is  general

definition first of all just to tell you what is the meaning of this maximum. 

We say a subset of  is maximal with respect to , first of all it must satisfy that property 

whatever. So,   satisfies   that is necessary. Then take any other subset which satisfy  ,

suppose  also satisfies  ok? then  cannot be properly contained inside .  must be the

biggest,   must be the maximal that is the meaning of this. So, if   also satisfies, and  

subset of  then  must be equal to .

 is  contained inside  and  is also satisfy this,  must be equal to  this just means that if

I  take  slightly  larger  subset,  strictly  larger  subset,  then it  will  not  satisfy   ok.  So,  this

property  must be for subsets of a topological space  that is the whole idea because it is a

topological property. So, whereas, this definition is for all, this is just set theoretic definition,

there is no topology here.
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Now, we are going to make it a topological property especially take  to be the property of

being connected.  In other words,  look at  all  subsets  of  ,  collect  all  of  them which are

connected into a family of subsets of the set . 

Now, you take a maximal element  in this collection ok that means, anything every element

here is connected first of all and anything slightly bigger than  will not be connected ok?

That is the meaning of maximal element ok. So, we can make that as our definition now, let

us see. 
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Let  be a topological space. Then every point  belonging to  is contained in a maximal

connected subset. Thus,  is the disjoint union of its maximal connected subsets.

If I prove the first part, then the second part is purely set theory because every point is in a

maximal set. So, union of maximal subsets will be the whole of . So, we want to prove that

each point is  contained in a maximal connected subset. To begin with,  singleton sets are

connected right? So, they are the members of this set of all connected subsets of  alright. I

want to show that it is in a maximal set, every  must be in a maximal set that is what I have

to show ok.

So, now, use this property to enlarge this single point into a maximal set that is what we want

to show, this property we keep using again and again so, here is the way how to do that. 
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Define a relation I am saying here is a way that is not just this is the only way, there are many

ways for example, you can use Zorn's lemma and so on, I do not want to use Zorn's lemma.  I

want to do this in a very elementary way. 

Define a relation  on  as follows:  is related to  if and only if there exists a connected

subset  inside  to which both  and  belong; both  and  belong to .

Singleton  sets  are  connected  and  so  this  relation  is  reflexive.  Take   as  singleton  the

singleton  then  is related to . If  is related to , then  and  are both inside . So,  is

also related to  . Transitivity needs some proof but that is  precisely what  we saw in the

previous theorem. 

If  is containing  and  and  is containing  and , then what happens  will be

connected because both of them have a common point .  and  are connected, they have a

common point so, union is connected is a previous theorem. So, I have found a connected set

which contains  and  ok? So, transitivity follows from the previous theorem.

Therefore, this  is an equivalence relation. As soon as you have an equivalence relation, you

have a partition. Then, this is the second part was precisely a partition, what is partition here?



 is the disjoint union of maximal connected subsets. So, each member of a partition is a

maximal connected subset. So, that part directly I am proving here ok? That will give you

that every point is inside a maximal connected subset.

So, these equivalence classes I have to show, are connected, and they cannot be bigger. If you

put any more point, it  will  be disconnected that is the maximality ok. To show that it  is

connected, take an equivalence class  ok? Suppose there is a partition, . Pick up an

element  and  ok, but they are in the same class which means  is related to  and

hence, there is a common connected set   which contain both  and  right, but since  be

connected it should be either in  or in  that is a contradiction, because one point is inside 

another point is inside  ok?

 (THIS IS IRRELEVANT AND  A REPETITION). 

Therefore,  is connected and there is no separation like this, there is no separation like this

ok.  Therefore,  each  equivalence  class  is  connected  right,  equivalence  classes  are  already

define a partition of .  So, anything bigger than that cannot be connected, but a set which is

bigger is not an equvalence class. It is a bigger class right so, these are actually maximal

connected sets.
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So, it is better to give a name for this maximal connected sets. After all, all the time  you will

have to keep on saying maximal connected, maximal connected. So, such things are called

connected components and quite often when you are discussing connectivity, you will just

say component that is the whole idea of naming this I mean this definition is just for the

namesake precisely I mean literally it is for namesake ok.
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Let  contained inside  be a connected subset. Then, the closure is connected. Now, why

we are having such a thing you see? Now, we want to understand what happens to connected

components, they are already giving you a partition of the whole space. Now, this theorem

says that take a connected component, closure is automatically larger, but it cannot be larger,

it has to be equal because the closure is also connected subset.  being connected component,

anything bigger cannot be connected therefore, there must be equality.

So,  this  theorem tells  you  immediately  that  connected  components  are  closed  inside  the

original space  ok? So, let us prove that  is connected. Assume  has a separation  ok

separation, but then  is connected so,  is inside  or inside . Remember if  is closed, 

is contained inside  , then   is contained inside  , this was our old result about closures.

Therefore,  is either inside  or inside , ok. So, there is no such separation.



So, you see several of these results we have been deducing by contradiction. Why  because

the  connectivity itself is in that form, that is what I meant by it is some kind of a negative

definition ok. 
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Path connected components are also defined in the same fashion, what is it? Maximal path

connected subsets of a given topological space ok. So, you can also say that they equivalence

classes where the equivalenece relation is that   is related to   if and only if there is a path

from  to  . No need to have that path connected subset and so on, the image of a path is

already a path connected space. So, this is slightly easier to digest, this equivalence relation.

In  fact,  usually  whatever  happens  to  path  connected  space  you  can  try  to  copy  it  for

connected spaces if it works it works so, that is the way that perhaps this theorem has been

used here, this definition has been obtained ok. So, path connected components also give you

partition of the whole space ok. However, one has to be very careful when you keep saying it

is same thing, same thing, same thing,.There is lot of close relationship, but but they are after

all different notions so, somewhere they will be different. So, that is what you have to be

careful about.
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Let  be a topological space and  be any point in . Then the set of all points of  which

can be joined to   in   is the unique maximal path connected subset of   containing that

point. So, this is another description of path connected components. Start at any point in a

space, look at all those points which can be joined to that ok so, that has to be obviously, that

is path connected, that has to be the component. If there is another point that can be also

joined so, it is already there that is all, very very easy to look at this way ok. So, there is no

need to write down formally the proofs of this one.
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This is where I want to caution you that path connected component need not be closed. In

other words, if  is path connected,  may not be path connected. If that was the case, then

components would have been closed. So, we will see an example little later ok. 

Secondly,  if  you have a homeomorphism from   to  ,  then look at  the path connected

components of  ok, they will go in one-to-one fashion to path connected components of .

Exactly, the components of , connected components of , they will go in one one fashion

to connected components of  ok.

In  general,  path  connected  components  are  connected  also  that  we  have  seen  right,  but

number  of  path  connected  components  may  be  larger  than  the  number  of  connected

components, but this correspondence is true for both of them ok. Therefore, what happens is

suppose you want to analyze a homeomorphism limit arbitrary  and  and something, you

can do that by component wise restrict  to one component here, when you go to the image, it

will be another component there. 

Therefore,  right  in  the  beginning  you  can  assume  that  both   and   are  connected  by

restricting the whole thing to a connected component ok. So, this is how I already told this

one, but I have repeated it now again alright. So, next time we will make it sure that you will



be able to see a counter example also for this. In any case, we have a lot of work to do about

connectivity alright. Simultaneously whenever such things are true for path connectivity, we

will keep uh informing you or we will keep pointing out to you that is all ok.

So, until next time so, let us stop here.


