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Welcome to module 33 of Point Set Topology part 1. Last time I mentioned some property of

real numbers namely, if you remove a point from an arc or from , then it gets disconnected.

How does one prove that? Intermediate value theorem from real analysis. That will give you

automatically that  minus any point is not path connected. So, intermediate value theorem is

something which is built-in in the definition of or in the construction of or in the creation of

real numbers.

Let us take a closer look at it. Because it is very very relevant to the concept that we are

trying to develop here. So, I am just recalling it here, I am not going to prove intermediate

value theorem. Let  from  to  be any map, where  is some open interval. Given 

and , there exists a  inside  such that  is between  and  and .

So, that is the intermediate value theorem.



As a consequence of intermediate value theorem you must know, you must recall that we get

Rolle's theorem in calculus about functions which are differentiable in an open interval and

blah blah blah right? Also remember that Rolle's theorem is false if we replace the codomain

by , where . Simplest example I would like to recall is  going to  which

is differentiable everywhere ok? The derivative is never .

But several pairs of points may have same same value and so on. So, this is an easy example

where you do not get Rolle's theorem. In any case there does not seem to be any meaningful

way to generalize intermediate value theorem, if you replace the codomain with any thing

other than some ordered topological space. Because you want to say intermediate value what

is the meaning of an intermediate value given two values what is the meaning of intermediate

value that does not make sense unless there is an order.

So, you must better take some order topology that is all. So, that is one way of making sense

out of IVT. Otherwise, things do not work and so on. But you do not give up. So, try to keep

the codomain as  itself and try to look at what is happening in the domain. Why do we need

the domain to be an interval itself all the time? That is not obvious. So, here is an example

wherein the domain need not be an interval ok.
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So, let  be any path connected space, we have defined what is a path connected space right?

Recall that a path connected space means any two points can be joined by a path. So, take

such a space . Let  from  to  be any map, map means of course, continuous function.

Now given  and  in  there is no way of saying that  or  and so on ok. But in

the codomain,  is between  and , makes sense, these are elements of . So, then I

say that there exists a point w inside  such that  is equal to .

So, it is at least like a part of the intermediate value theorem. Intermediate value has been

obtained though the point wherein it is attained that point maybe you do not know you cannot

compare  it  with   or  ,  because  there  is  no  order  in  .  This  is  quite  a  satisfactory

generalization of intermediate value theorem ok?  So, how does one prove it? One line proof,

you have two points   and   inside  . Join them by a path   from   to   such that

 and .

Now, we apply intermediate value theorem to ,  is continuous and  is continuous the

composite map is continuous. This will start from  and ends into . So, IVP is applicable

ok. So, you get a  between  and  such that  will be equal to  which is between 

and . This  is precisely the point some  here ok. So, put  equal to , then 

is equal to . Over.

So, now comes the next question. I have done something fine, but I am not satisfied, can I

replace the path connectivity  assumption on   ok? assumption on this domain here with

some weaker condition in the above theorem ok. Finally I do not want to get into this paths at

all, is there some way of telling that? Why I am asking that question? You may ask why this

question at all and you know you can question the question itself. 
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So, there is another point of view. Instead of answering that I will take note of it and look at

the thing in another way. Consider the union of two non-intersecting closed discs inside a

metric space. If you do not want too much of that you can do it in  or  and so on any ,

but there must be non intersecting non empty closed discs let us say ok? Immediately your

intuition tells you that there is no path from one to the other ok? So, that space the union of

two non-intersecting disjoint closed discs is not path connected why? 

Have you proved it? Now you cannot use intermediate value theorem. Intermediate value

theorem needs that the codomain to be an interval in .  

If you are doing it inside  , there may be a way to convert it like we did the conversion

here, but I am taking arbitrary metric space ok? But you still feel that this is true right? Why?

There is no path from one point in the closed disc this to a point in the other closed disc right.

Now how to make this idea rigorous? So, this is the question, how does you prove this one?

That is all ok.

So, it seems that we have been forced to use one of the most important properties of the usual

topology of the real numbers here that in the real the numbers there are no gaps. So, this ‘no

gaps’ concept, it may be difficult to understand in the case of arbitrary metric spaces, but we



seem to understand it in the case of real numbers. In fact, this filling up the gaps was the

motivation  of  construction  of  real  number,  the  gaps  were  there  in  between  the  rational

numbers or any algebraic numbers and so on ok.

But, so we have been able to convince ourselves that the real number system has no gaps

right? So, that property we come back again and again we have to use that one. So, because

of the importance of this property, there is a need to formulated this `no gaps' you know this

concept,  independent  of  the  order  of  real  numbers.  It  is  a  possibility  that  as  a  natural

consequence  of  such  an  effort,  if  this  effort  is  successful,  we  will  be  able  to  use  it

meaningfully.  This can quite useful because it will be available in a larger context.

So, this is precisely the so called notion of connectivity. So, all  this I am talking to is to

motivate  why we need  the nonintuitive notion of  connectivity  as compared  to  very  very

intuitive notion of path connectivity which is very easy to understand ok? 
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So, let us see how connectivity answers these two questions that we have raised right now.

Let  be a topological space and  be a subspace. So, I am making some definitions now.

By a separation of , we mean two non-empty disjoint subset  and  such that the union is

equal to , both  and  are closed, OR equivalently, both are open in . 



So, all these things I express by just writing very cryptically  equal to ,  equal to 

separate . You read it as  separate . So, this vertical line is like, you know, a cardboard

partition. So, remember what are the conditions: both of them must be non-empty; they must

be disjoint. Both of them closed or both of them open, there are two different ways of looking

at them. The union must be . So, these are the things which you have to remember all the

time just by this symbol ok. 

If there is no such separation, i.e., the negation of this is very important. Even if one of these

condition is not satisfied it is a negation. So, you have to understand that way ok. If there is

no such separation of  then we say  is connected. 

So, connectivity which is which is a very nice concept finally, is defined in a negative way

here ok. So, but I have tried to put it in a positive tone ---  if there is no separation. So if there

is a separation, then we say  is disconnected. 

I would like to include the space empty set also in the definition. It does not come all that

easily? Because I am assuming   and   are non empty here? So, an empty set cannot be

union in this fashion. Therefore empty set is connected by definition ok? So, this is you know

this actually forced by this definition. In any case, this is the convention. 
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What has this property of  to do with the space ? See I started with  inside  ok?  is

topological space and  is subset ok. 

See the phrase closed in ; that is the phrase that will tell you what is that relation, what is

the meaning of closed in ? In the subspace , so I have to take the subspace topology from

 to  ok? That is the cliche here. Once you take the subspace topology you can forget about

. Then you can talk about closed in  to mean closed subspace of , that is all ok? So, only

to get the subspace topology this  is there that is all.  So, what is what has this property to

do why to do with is the space ? The answer is we are taking the subspace topology on 

from the topology that is all.

The  definition of  connectivity  of   is  completely  given in  terms of  the topology on  .

Sometimes it is useful to directly write down the condition in terms of the topology on . As

done in some expositions they give you a different version of the same definition. So, that

definition will become a consequence of this definition and vice versa. So, let me give you

that, what is that? Let us denote   denote the closure of a subset   taken inside  ,  the

closure is taken inside . 

For every subset  which may be subset of  does not matter ok, then instead of writing this

one I can write this set of conditions namely  is the union of  and ;  and  are non-

empty; finally, instead of saying   and   are closed and so on, all  that I say is   is

empty and  is empty ok? In particular, you will see that since  is contained in , so, 

and   are disjoint. That will come automatically, ok. So, the only new thing is, instead of

saying that   and   are closed inside   ok? The topology of   is not bothered about it

everything is referred to now to the topology of .

So, this is another definition. You can verify very easily that this definition is the same thing

as, I mean it is equivalent to this definition (21) here.
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Let us carry on with this definition and do something. A space is  connected if and only if

the  only  subsets  of  ,  (subsets  of  ;   I  am  taking   as  the  space  now  instead  of  

deliberately) which are both open and closed in  are empty set and  itself ok? 

So, these two sets are improper, proper subsets means what? Non-empty and not equal to the

whole space. There is no proper subset of   which is both open and closed. So, that is the

connectivity. This is very immediate because suppose you have say  is a subset of  which

is both open and close and neither empty nor  then you can write  as . Over right?

Conversely  also,  if  you  use  (21)  of  course  notation  is  different.  If   and  

nonempty and both are closed, or both are open, it follows that   is a proper subset of  

which is both open and closed. So, here I have not written down. So, that part at least you

should do on your own. 
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A set which is both open and close will be called a clopen set. So, this is a short for saying

both open and closed that is all. So, I may or may not use this at all, but some authors use this

one quite often. Thus a space is connected if it only if the only clopen subsets in it are or

empty set and the whole space, the improper sets. This is just rewording this theorem you

know, just reformulating this theorem that is all. 

In your real analysis course you may have learned that every interval in R is connected, (I

will come back to this one now), with this definition. You may have come across with this

definition then what I am content, but if you have not, we will do it here do not worry. Indeed

the following theorem tells  you that  connectivity of intervals,  existence of greatest  lower

bound, existence of least upper bound (greatest lower bound least upper bound have go hand

in hand) and the intermediate value property, these are all equivalent to each other. 

Therefore, the notion of connectivity that we have introduced is pure topological. Now you

see that it could have been used instead of glb and lub in the construction of real numbers ok?

At least we will see that these things are equivalent right. So, I am redefining this one here

the Intermediate value property. 
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A subset   of   is said to have intermediate value property(IVP) if the following is true.

Given any continuous function   from  to   and points  , say  , (  and  are

points of  where I have some order and so that either  or  that is all) and  such

that  lies between  and  there must exist  belonging to  such that  and

. So, whatever the statement, you know, of intermediate value theorem I made it to a

property. The theorem says that if  is an interval then this has this property right? So, we are

going  to  prove  that  one  and  whatever,  so  that  is  the  part  of  the  game  here  now.
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So, let  be any subset of . So, I have used this notation  for usual, interval here I am not

assuming that   is an interval ok? Then the following conditions are equivalent. (i)   is in

interval.  (ii)   is  connected.  (iii)   has IVP. So, I  think I  want to prove these things are

equivalent that is the whole idea here ok. So, in particular, this will prove intermediate value

property for intervals alright. So,  now we are bringing the connectivity in between that. 

Consider first a special case ok, where   is a closed interval ok. To prove (i) implies (ii)

means what? If it  is an interval it is connected is what I have to show. Suppose it is not

connected.  Then  I  must  get  a  contradiction  that  it  is  an  interval.  Everybody  knows  the

definition of an interval I hope ok? So, suppose there is a separation  , with  

belonging to , and  belonging to . This is the special case. Because once it is separation

both  and  are non-empty, you choose these points accordingly. Let   be the least upper

bound for . 

Now I am using the least upper bound property here ok? For the real numbers.   are

subsets of the closed interval they are bounded. Take the least upper bound for . Closed and

bounded subsets always have a least upper bound. It follows that this   must be between 

and  right? Because I have assumed  is a closed interval.  

So,  is inside  ok. No botheration. Since  is closed it follows that  is inside . So, this is

another property of least upper bound I am using, least upper bounds are limit points of the

corresponding set. So, in particular  is less than , Why?

Student: sir,  and  they are disjoint, we know.

Right, they are disjoint that is all yeah you are right. So,  is less than  ok. First I said  is less

than equal to  you know, since  is also an open subset of , you see we have assumed that it

is a separation. So, both ,   are open and closed ok. So, it is an open subset of  , ok? It

follows that there exist  and  such that . Since  is a point of  ok and 

is open of course  is strictly less than . Therefore, I can always choose some  here ok?

Now,  is less than  and that  is also less than , ok right. This elementary property of real

numbers and open subsets of real numbers. But this on side I do not know  may be equal to 



also. So, I do not know that. So, I have may have to take . I have to include equality

sign as well, ok? But what is the conclusion? That the whole  is contained inside , why?

Because  is open in the closed interval  and  is open a closed interval  means for

every point there is a neighborhood of this nature inside  that neighborhood can be chosen.

So, that this  is smaller than  is an extra thing that is all ok. In any case if you have chosen it

inside  automatically it will be less than b there is no problem, but this contradicts the fact

that  is an upper bound for  because there is  also in  now bigger than , a contradiction. 

So, in other words what I have used here is: if you have an open set ok of real numbers,

bounded, the upper bound or even the lower bound ok cannot be a point of the open interval.

So, that is all I have used here alright. So, what we have proved? We have proved that every

interval, so only closed interval is connected.
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Now, let us prove the full thing, now consider the general case wherein   is any interval

having a separation. We may assume that there are points  less than  belonging to  such

that   is in  and  is in  ok. By interchanging  and  if necessary, one point here, one

point here. Why this  should be less than ? That one I do not know. But you interchange

them that is all, then you can assume that  is less than . 



We now take the restricted separation: look at this closed interval  ok once  is inside 

and  is inside  both of them are inside  the entire interval  is inside .  is an interval

that  is  what  is  assumed  right.  So,  the  entire  interval   is  contained  in  ,  that  is  the

definition of  an interval.  So, look at the two sets,  .  They will  form a

separation for this  now. Only thing you must see that both of them are non-empty other

things will be automatic.

They will be disjoint, union will be the whole thing and both of them are closed. Why they

are non empty? Because  is here this is non empty and  is there fine? So, we are now back

into the first case. So, the proof is over. Now let us go to (ii) implies (iii). So, what is (ii)? (ii)

says   is connected ok? (iii) says it has intermediate value property ok. So, (i) implies (iii)

will come automatically every interval has intermediate value property that is a theorem that

you know in analysis, but here we are going to prove it.

So, first I have to connectivity implies the intermediate value property ok. So, let  from  to

 be a continuous function. Take  less than  belonging to ,  these are the

hypothesis for intermediate value theorem ok. Then you have to find out some element here

between  and  such that element goes to this  here. So, that is what you have to do right.

To prove the  intermediate value property that is what you have to do. So, once  these things

are given to you put  equal to . All the all the points mapped below , all

points which go to less than  are inside inside is  . All those which are mapped to bigger

than  are inside  ok? Then  and  are non-empty because  is there in one and another

one  is there open disjoint subsets ok.

Suppose  does not belong to . See we want to show that there is some  such that

 that is the same thing as this  belongs to , right. If  does not belong to  that

is the only point which is missing from here, then it follows that these two sets will cover 

right? Therefore, this   becomes a separation,  . That is a contradiction because

we have assumed   is a connected set here. Be careful here I have never used that   is an

interval, the last part I am using that  is a connected set ok. 



Now, (iii) implies (i) is a very straightforward thing. If  has intermediate value property ok

then we consider the inclusion map here   to  . What is the meaning of   is an interval?

Given any two points  in , everything between them must be there right? The inclusion

map has intermediate value property means what? Because it  is continuous,  it  must have

intermediate value property any point between  and  must be there. That is all.

So, this (ii) implies (iii) is more or less topology and (iii) implies (i) is completely trivial. Just

apply the property (iii) to the inlcusion map. 
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In particular it follows that  itself is connected, because  is an interval. Notice that we have

used crucially the fact that every bounded above set in  has a least upper bound that is the

only thing which you have used which is equivalent to saying that every bounded below set is

has a greatest lower bound.

 (REMARK: THE PROOF OF (ii) IMPLIES (iii) GIVEN HERE IS INCOMPLETE. REFER

TO THE LIVE SESSION 3). 

We have also used the fact that a least upper bound of a set  is in the closure of  which is

true in any order topology. It is nothing special about real numbers. It is true in every order



topology. Indeed the following generalization gives a two-way general result on the order

topology that we have discussed in example 1.39 in the first chapter ok. So, you see I wanted

to  show  you  that  these  three  things  here  are  all  same:  connectivity,  being  an  interval,

existence and IVP. So, first I took only this one now I am attacking this glb ulb itself ok.
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So, here is a theorem to understand this one I have to go to arbitrary totally ordered sets with

a certain property I do not want to impose myself that I am looking at real numbers. That will

be like in a vicious circle ok. So, start with a totally ordered set and give the order topology

on it. It is order complete if   is connected. Order complete means what? Every bounded

above set has a least upper bound that is what you have to prove ok?

And every  bounded below set  has  a  greatest  lower  bound  that  is  the  meaning  of  order

complete. If it is connected I want to say that it is order complete.  For the converse you have

to assume one more condition. Conversely suppose   is order complete and satisfies the

property that given any two elements  less than , there exists a third element between them

ok. This is like what this is  similar to or equivalent  to the Archimedean property of real

numbers ok.



Then  is connected. So, connectivity is equivalent to this order completeness. Only thing

you have to assume that totally ordered set which has this Archimedean property. See here

there  are  no  integers,  no  rational  numbers,  no  additive  structure  etc.  So,  you  have  to

reformulate the Archimedean property in some way this is the way it has been done here. So,

all these goes back to Cantor it is not my invention or anything. So, I am doing this because

many standard books do not have these things that is all ok.
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Suppose  is connected. Let  be any non-empty subset of  which is bounded above, say

there is  in  such that  is less than or equal to  for all  in  ok? That is the meaning of an

upper bound. Now take   to be all   such that   is less than or equal to   for every

, ok. 

This  is non-empty because this  is there. You start with a subset which is bounded above

now you take all possible upper bounds  of ,  for every . Then  will be there in

that set ok that is  the set of all upper bounds of . Clearly b is in  and so ok.

Now  is bounded below why?  is non empty. All elements of  are such that they are all

less than or equal to elements of , each element here. So, it is bounded below. 



Let  equal to the set of all  such that , for every . What I am doing here

now? I am looking at all the lower bounds of  , take all of them that is   ok. Then   is

contained inside  because all elements of  are already lower bounds for .

But this set  may be very larger much larger than the set , ok. So,  is contained inside .

Now, clearly  itself is the union of  and . So, elements of  are either inside  or they

must be inside  ok? That is all I am claiming here. What is the meaning of that  is inside 

? Inside  means what? Every element of  must be smaller than that element  ok. If that is

not true, then there is some  such that . But then  is less than all elements of  as

well and hence is in . 

So, now the claim is that   is nonempty. Suppose we prove that   is non-empty

then you can take any   then   is the least upper bound for  . Elements of   are

upper bounds for  that is clear. If  is also inside  then  has to be smaller than all the upper

bounds. That is, it must be the least one ok.

So, how do you prove  is non-empty? If  is empty, we get both  and  are first

of all open subsets ok? That we have not shown. We will show that. Then it will follow that

. So, this will be a separation of . But we started with the assumption that  is

connected ok. So, we have to prove that  is non-empty. So, if it empty then there will

be a contradiction ok. So, I assuming that it is empty and then we are getting a contradiction.

I will show that both  and  are open. So, that is what I have to do that now.
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So, let  belong to C ok. Now  is not in  implies that there must be some  contained

inside   of course, such that   is less than , ok? Because   is by definition all the upper

bounds of elements of . So, at least one element of  must be bigger than x. So that is the

meaning. But then  belongs to the set, namely all those  such that , right. 

So, this set is much smaller than  because  is the set of all elements less than or equal to 

for all  ,  ok.  So,   belongs to this open set  contained inside  .  What  I  have done?

Started with any element , I have got an open set. By definition this is an open set by

the way, in the order topology on . And this open set is contained inside . Around every

point inside  there is a neighborhood contained inside ; that means,  is open.

Same thing I want to prove for  also. Suppose  is inside ; that means,  is not inside 

right. This implies that there is  in  such that . That is the definition of  after all. If it

is not in  then there is some  which is less than . But then look at all  such that  is

less than . That will contain this  and is contained inside . So, this prove  is open. 

So, this completes the proof that  has a least upper bound ok. 

The proof of the converse is verbatim as in the proof of connectivity of an interval (i) implies

(ii). How did you prove that?  Exactly same proof here. Instead of usual less than or equal to

you replace it by this  that is all this notation ok. So, this is something where I have taken



you somewhat  deeper.  So,  go through this  one carefully  because  these things are  purely

logical here. that is all nothing else. 

So, you can try to write down try to make a picture and so on, but when you make a picture

you may be misled because then you may be already using the properties of real numbers. So,

you make a picture, but throw it away and see that everything comes from pure logic. So, let

me do a little more here. 
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.

Let  from  to  be a continuous function. Then every path connected subset  of , take a

path connected subject here, the image of  is path connected ok? 

So, now, we are trying to prove something about properties of path connected spaces.  In

particular if  is path connected  will be path connected here. In particular if the map 

is surjective and continuous and  is path connected will imply that  which is  is path

connected. So, other than continuity I not not assuming anything on  . If you have subset

here which is path connected, it will remain path connected under , this is the correct thing

you have to do. 



So, this is a one-line-proof. Assume that  ok, instead of now instead of taking subsets

you restrict the whole function to , so that you can assume  is equal to  itself and  is

surjective. What do you mean by that? You replace  also by . Then it is as if you have

taken a surjective map  ok? Now assume that  is connected. Suppose  is a separation

of  equal . I must get a contradiction. Because I wanted to prove that  is connected,

First I am looking at connectivity. Later on path connectivity. You will see that is obvious

anyway.  So,   and   are  forming a  separation  for  .  Then immediately  it  follows that

 the whole of  . Because because what? Because now   is surjective. So,

 will be whole of . They are disjoint because  and  are disjoint. 

They are closed because  and  are closed. They are non-empty because  and  are non-

empty everything is from  and is pulled back to  under  everything comes back. So,

this shows that if  is connected so is  ok. 

If  is path connected so is  is easier. Because take two points inside , they are the image

of some points here right like  and ;  and  are there inside . Now join  and  by a

path   in ,  will join  and  in . 
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Maybe I should stop here now ok? 


