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Welcome to chapter 2 of Points Set Topology course Part-1. In this chapter we discuss a

number of topological properties which can be classified or which can be called smallness

properties.  So,  what  are  they?  I  have  listed  them  here:  path  connectivity,  connectivity,

compactness, Lindelof property, separability, 1st and 2nd countability. It is better to leave

this phrase smallness properties undefined, it  is  not a part  of mathematics ok, it  is about

mathematics. 

So, there is no need to define this word rigorously. Let it stand as a you know whatever it

implies in the English language there; however, as a temporary stop-gap, you can explain it

as follows ok? 
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Roughly speaking we just mean that the topology does not have too many open sets, but that

is as vague as the words themselves. So, I will try to make a definition, but do not worry

about that definition much. Please I am trying just to explain it. That is all.
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So, you can call a topological property  a smallness property, if whenever  satisfies 

, then for all topologies  on  such that  is smaller than  i.e.,  is contained in , 

also  satisfies  .  So,  in  that  sense  with  respect  to  this  ,   is  small  enough,  after  that

everything which is smaller than that will definitely satisfy . Bigger ones you do not know. 

So, that is the meaning of this ok? So, with this definition you can keep track that many of

these properties here do fit into this definition, I mean they satisfy this property. I caution you

the last two in the list are not of that nature. Nevertheless they fit  into the vague idea of

smallness you will see why ok? So, that is why I am not very fussy about this definition ok?

(Refer Slide Time: 03:28)

So,  the first  module  here  is  module 32 Path Connectivity.  This  concept  is  directly  from

Layman's  point  of  view  or  what  may  say  elementary  geometric  concepts  which  are

generalized into path connectivity. So, first of all let us make a rigorous definition what we

mean by a path. 

Start with any topological space. By a path sometimes called a curve or sometimes called an

arc in , (I will be using the word path only quite often), we just mean a continuous map this

 from a closed interval  to . The points  and  are called end points of . To be



more specific you can call  the initial point and  the terminal point. We also say that

gamma is a path joining  which is  and  which is .

So, all these terminologies which are very much just ordinary English words, they have been

given some definite technical meaning here that is all. 

If such a path exists we say  and  can be joined in . Is that clear? 

You may think that a curve should be something that it has some positive length and so on.

With  this  definition  there  is  no  notion  of  length  etc,  first  of  all  because   is  only  a

topological space. Before you want to talk about length etc you must have a metric there.

Secondly, even if you try to draw some picture of this path ok, picture means what? Then you

have to assume  is   or something right? The first thing is that this is just a continuous

function ok. So, in particular this may be a constant function. Then if you look at the image, it

is just a single point. So, you may say that this is not a good definition of a path at all. Before

throwing it away like that, you have to just wait why we have such a general definition for a

path.

A point map is also treated as a path, it is called the constant path. That is all. So, let us hang

on to that, there is no need to throw it away ok? though it is defying our common sense of a

`path'. Alright? So, let us carry on with these definitions. 
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Given two paths; now paths are from some closed interval remember. So, there are two of

them means  from  to  ok,  equal to  and . Suppose that  is equal to .

In other words, terminal point of  is the initial point of . Terminal point of the first one is

equal to the initial point of the second. Then we define the composite path ok this composite

path is  not  a  composition of  maps,  not  a  composition of  functions.  So,  we have  to  pay

attention to that. So, I am using this dot here  , from some interval   which I am

going to define, into . Everything is inside . By first taking a starting point  here.

I go all the way to  via  ok. So,  will be the map from , but now the second point

is some  right? So, I have to shift  to  in the interval wherever it is and then trace the

rest of the interval using . So, I take  equal to  equal to  ok. So, 

brings  or  whatever  to  add  so that it starts at  that is the whole idea.

So, this is the shifting of the interval   ok to start at  . After doing that the path  is

defined like this.   in the first part is   between  and . From  to  , this

length is precisely equal to . So, it is . When  equal to , what will be this?

This will be  right?  could be  here.



So, this  which is equal to , where  equal to  is  and this is  they

are equal, therefore this is a well defined continuous function on   ok? By the inverse

path-- I am going to define what is the meaning of inverse path ok, of a given path--- we just

mean the path defined by  equal to . You just want to replace  by  so

that you are just tracing the same path in the opposite direction.

But since you are not working on an interval around   but some   you have to do this

shifting, a bit of arithmetic here,  is the correct thing. So, when  is equal to . So,

that is the end point now,  becomes end point ; when  equal to , it is  which

is the which is the terminal point of  which is starting point of . So, the initial point and

the terminal points are interchanged. So, that is the path, the inverse path of this one. Traverse

in the opposite direction. 

These definitions are borrowed from, what happens to when you do integration on paths.

Unfortunately,  on  arbitrary  paths  you  cannot  do  any  integration,  you  have  to  have

differentiable paths or piecewise differentiable paths. But we do not need that in topology.

First of all  we do not know what is  the meaning of differentiability of a function taking

values in arbitrary topological space. That will be too much. 

We are doing topology here. Even in a metric space you will not know what to do with that.

So we have come far away. From the Euclidean spaces to these topological spaces, wherein

differentiability etc were valid. But the some basic idea still retained from that. 

Often, by a curve one means the image of the path gamma, people always think of arc of a

circle or an ellipse or a parabola. 
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See in each of the cases whatever curve you mean, is described in a different way, the circle

or an arc of a circle, the entire circle is described by a quadratic equation, parabola,  by a

quadratic  equation.  And  we  want  to  get  rid  of  all  that  and  that  forces  us  to  have  this

parameterization point of view ok? So,   which is described in this curve now is called a

parameterization, like  going to , or , whatever, is the description or parameterization

of the circle ok? 

So, our definition is  called a parameterization of the curve, by those people who know what

is a curve through a different definition ok? For instance the circle in the plane, , this is

another way of describing the unit circle. This can be thought of as a curve given by  

maps to  or equivalent to , or just  here ok?

So,  those are all parameterizations of the same circle; however, we will consider two paths as

different if they are given by different functions ok? The only condition on the function that

we put is that it must be continuous. So, such things are called paths. 



(Refer Slide Time: 14:05)

Observe that since  it is ; it follows that the composite is well

defined which I have already told you. Thus, we see that composite path is obtained by first

traversing  along   and  then  along  .  So,  this  is  the  geometric  uh  uh  idea  behind  this

definition. Moreover image of this  is nothing but image of  union image of , they may

overlap, they may whatever may have both of them may be constant at some point, then if

that is the case that point will be the same for both of them because one point they are agree

here. (Refer Slide Time: 15:01)



So, all those things are allowed because of the very generic nature of the definition here. Also

note that if  from  to  is a path and  equal to  less than  less than  etc.  equal

to . Suppose you take a division of the interval into two parts by taking a point between 

and  namely  ok. Then you can think of this  as  where 's are the restriction of the

original  to the sub interval  and . 

So,  this  remark  will  be  crucial  practical  importance  for  us,  this  can  be  done  for  any

subdivision I have put here. You can make finitely many cuts,  finitely many divisions also

ok. 
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So, suppose you have a map  from  to , strictly increasing continuous function.

So, that itself is a path actually because it is a continuous function it is a path where inside

this space . But it is strictly increasing and I am assuming that  goes to  goes to 

ok. Then we say that the curve , see  is from  to  ok  is from  to  or

just you can write alpha beta there is no need of putting primes. The composite curve arises

by a change of parameterization from . This is the definition now. So, earlier we had gamma

as a parameterization.



Now,  is a re-parameterization of . What is the condition for re-parameterization? This

re-parameterizing factor must  be strictly increasing continuous function. In  particular,  the

direction with which you are tracing the curve is not changed. For example, the inverse path

of a path is not a re-parameterization ok? Sorry,   which you have defined here, is not a

reparameterization of  . It is tracing the same curve in the opposite direction ok. So, here

what I  am saying is  this   is  from here to  here,  but   from here  to  here,  any  strictly

monotonically  increasing  function  which  is  continuous  automatically  inverse  is  also

continuous ok.   is defined and is continuous, and strictly monotonically increasing.  It

follows that change of parameterization is an equivalence relation among the set of all paths

in a space . 

So, this is one of the reasons why the equivalence classes are considered as paths or curves

ok. Not exactly, you are not exactly interested in the equivalence classes right so you can pick

up one of the parameterizations whichever  suits  you. So, this will  bring you more to the

geometry of the curves rather than the parameterization itself ok.

But when you define such a thing you must see why you are using the parameterization and

what is the intrinsic property, why it will not change under this change of parameterization all

this you have to be worried about ok? 

(Refer Slide Time: 19:28)



So, here are examples, the mapping  which is   which I was telling

you can write it as  or whatever, for  is another parameterization of the unit circle

which was earlier  going to , but on the interval of  ok. So, from here to

here you take multiplication by  and follow it up then you get this one. So, that is the idea. 
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Given any 2 points   and  belonging to the plane , the mapping , this is

called what? If  is restricted between  and , it is the line segment from  to  ok. So, this

will  be  denoted  by  .  This   will  be  called  a  line  segment.  This  notation  is

borrowed from what we do in the real line, but need not be necessarily a line, it could be

 etc also. So, this is the notation, not only for the line segment, I am using this notation

for the actual path  to , given by  going to . The domain must be  and

 and   are inside a  vector  space over  .  You are welcome to write down various re-

parameterization of the same path ok.

So, for example,  going to  again  will be the inverse, because now

when  it will be  and  it will be . This will be denoted by . So, this is the

inverse path of that ok,  is replaced by . Note that such notation is somewhat unusual.

Other than intervals in   ok, intervals in  like that this you have to be now familiar with.



Often, we shall merely refer to either of these segments, merely by the line segment between

 and .

This will make sense only if you are working inside a vector space ok, here I am talking

about  . So, why I have done just for   because these things are very useful in complex

analysis when you are doing contour integration. That is the motivation for just quoting these

things that is all. After all whatever topology you study you would like to use them elsewhere

also.

(Refer Slide Time: 22:48)

One  of  the  most  intuitive  and  primitive  and  important  topological  property  is  path

connectedness, ok. The time we just say no connectivity just means that there is no road,

there is no vehicle from here to there, we are all isolated and so on.  So, the word path there,

what do you mean by we have a path? So, that we can drive a vehicle we can try riding a

bicycle or whatever ok, there must be a path. 

We say a subset   of a topological space  is path connected if any two points 

can be joined inside . Remember what is the meaning of can be joined. We can find a path

within  with end points as  and  ok. By the very definition if they can be joined means it

is symmetric ok, I do not care whether  is first one or  is the initial and terminal points can



be interchanged. it is a symmetric relation. Every point can be joint to itself by the constant

path. So, it is reflexive right?  

So, finally, if you can  to  and  to  all of them inside A what happens? You can take

the composition that we have defined. So, that will take you from  to . Therefore,  if you

think of this as a relation viz.,   can be joined to  , that is an equivalence relation. Right

now, I have just defined what is the meaning of path connectivity, that just means that there is

only one equivalence class, every point can be joined to all other points ok.
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If we have one single point  inside  to which every other point of  can be joined, then

any two points of A  can also be joined with each other. What you have to do? First start

with  to  and then  to . So, you take two of the paths like this and use the composition

ok? One single point which we can be joined all other points inside . That means  is path

connected. 

So, look at the union of -axis and -axis,  can be joined to every point in the union of -

axis and -axis right? So, that is the kind of situation I am in mind here ok.
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So, now just all the time we have examples inside  and so on, the same thing can be

done in any vector space  ok? Recall that a subset  of a vector space  is called a convex

subset,  whenever  and  are there then the entire line segment must be there right? So, that

is  the definition of convexity.  Automatically what does it  mean? Any two points can be

joined  by  the  line  segment  itself  and  therefore,  in  particular,  every  convex  set  is  path

connected. 

And more generally what you can take is:   is called a star-shaped subset if there exists a

point  belonging to  such that for every  inside , the line segment  is inside . So,

this is the case wherein you are taking union of say two lines, which are intersecting at a

point or several lines which are intersecting at a single point, all of them. So, those things are

star shaped ok, they are not convex ok. Yet they are path connected because of this property

that we have discussed here. 
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If we delete a single point from , it becomes disconnected. Well we have not defined what

is the meaning of disconnected let alone prove it.  But we immediately understand what it

means. This is now just this English word ok? 

So, right now let it hang like that. We will define what is the meaning of disconnected later

and we shall actually prove rigorously that this happens or  .  Indeed,  this is true of any

interval also, if we delete a point ok that point should not be the end point.  From the closed

interval , if you delete  it will be still connected right?

So, here I meaning path connected ok because every point in the interval closed interval 

say ., every any two point you can join them there the line segment is already there it is

all the convex right. So, you can use the word path connected which you have defined. Then

everything  is  clear  here  alright?  So,  if  you delete  one  point  from  ,  why it  is  not  path

connected that is not obvious, you have to use something deeper about real numbers ok?
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We will come to that one soon. Try to prove that even if you delete a finite number of points

from   and   it  remains  path  connected.  So,  this  is  immediate,  this  can  be  done

immediately ok? See if you remove one point from  it gets disconnected, but if you remove

finitely many points any number of finitely many points from , it is still path connected

you can join them by path. How do you do that?

So,  I  would like  to  leave  it  to  you as  an exercise.  If  it  is  too difficult  or  you have  not

understood, you can contact us again ok. Similarly, the unit sphere in  for . For 

it is the circle,   it is the  sphere and so on. They are all path connected even though

they are not star shaped. How do you show that a circle is path connected? Given any two

points  there are two ways,  you know, you can have two different  arcs,  you can use the

restricted parameterization, done. 

But when you go to the  -sphere how do you do that? Think about these things, these are

completely geometric and it is like an extension of your calculus, study of calculus ok.
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So, at this point we will take a break. So, we will continue it tomorrow, next time.

Thank you.


