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Welcome to module 30 of Point Set Topology Part I. Last time, we introduced the study of

product sets basically and started just the meaning of putting some topology on the product

set. I will recall this theorem which we did last time. And, then we will go ahead. So, this was

the theorem: On  which is the product of the family 's ok. There is a unique topology

satisfying these two conditions.

The projection maps 's are all continuous and given any topological space  a function  is

continuous from  to  if and only if  which are so called coordinate functions of .

They are all continuous for every . So, this was proved last time. 
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And, we observed that this proof gives you two descriptions of this topology namely you can

just say that the topology that we have got here is the smallest topology with respect which

all the 's are continuous or you can just describe it by the subbase. Take any open subset in

 take  of that. Put all such sets in one single collection . So, that will be a subbase for

this topology it is  means what? generated by . So, this is the other description. 

So, now let us continue the study of the product spaces to some extent whatever we can do in

half an hour that is all. Of course, during the entire course, we will keep coming back to the

study of products spaces again and again. 



So, start with a family of topological spaces and take the Cartesian coordinate space which

we have defined as set of all functions from the indexing set j into the union of X j’s with

certain property ok. 

So, start with a family of topological spaces and take the Cartesian coordinate space which

we have defined as set of all functions from the indexing set   into the union of  's with

certain property ok. Let   be the smallest typology such that all  the projection maps are

continuous. So, this is the theorem that we had. So, I am just recasting this as the definition

now. Then,  is called the product topology and  is called the product space of what

of the collection , you know 's.

Whenever we are dealing with a family of topological spaces by the word product space we

shall always mean this topological space unless mentioned otherwise. Why I am telling this

one because though 's are given, there may be many different ways of putting topology on

. When you say product space you should take this that is the convention now. Just like

when we are taking  and then we say usual topology if the topology induced by the distance

function there right. So, that is the convention.
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Another important aspect of the product topology is the following. First recall this definition

of convergence of sequences in a topological space. 
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What is that? Here given any topological space  a sequence  converges to , if only if

for every neighborhood  of  there exist an integer  such that  implies  is inside 

ok?  I am just recalling this definition then I am going to use it here now.
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So, a sequence  inside the product space  ok. this will converge to  belonging to 

if  and only if  each  coordinate  sequence  is  convergent.  Evaluate  each element  at  the  

coordinate then you get a sequence  in . So, that must converge to . What is ? 

is the  coordinate of  ok.

So, this is another of more or less characterizing the topology, but that is not what we are

going to do. We are going to do only one way. Characterization is little more stringent. They

do not work in complete generality. So, if  you take the product topology then it  has this

property is what we are going to see. 
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The necessity of the condition follows, from the continuity of projection maps.  once this

sequence is convergent   of that sequence must be convergent because 's are continuous

 of this sequence is actually the sequence . And where they should converge? To

. So, the continuity of  's will ensure this if this is a convergent sequence then each

's is a convergent in . 

Converse is what we have to take care of.  That is also a one-line proof. First of all you must

observe that for every  containing  we must verify something, but it is enough to do it for

subbasic open sets. Once you have done it for subbasic open sets, it gets verified for finite

intersections of subbasic open sets, by taking the maximum of this  integer got

for each of the case we have taken. So, that will give you the verification for all basic open

sets. Once it is verified for basic open sets around each point in an open set, there is always a

basic  open  around that  point  and  contained in  the  given  open set.  So,  the property  gets

verified for all open sets. 

So, this is the elaborate way of putting the whole thing,  but we have seen all these things, the

role of bases and sub bases. So, here I am going to use it for the first time. So, this is the way

economically we can do a lot of work that is the whole idea of base and subbase after all. So,



let  be a sub basic open set in  such that  belongs to , then I must find an  such that

for  all the 's are inside this open set. So, that is what I have to do. 

Since  a subbasic open set it will look like  for some open subset  in  for some

, right? Now,  belongs to  is the is the hypothesis right? Because  is inside .  is

this  one  ok.  So,  this  implies  that   is  inside   in  .  But  now convergence  of  the

sequence  will tell you that there is an  such that all the 's are in  for 

Because, sorry all the 's are inside  for , but that is the same thing saying, 

belongs to  and that is . So,  is arbitrary open subset a subbasic open set and we

have verified the property for all of them. So, this is done ok.
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So, let us go ahead with the number of remarks here. In the language of function spaces, the

above  theorem  tells  us  that  product  topology  is  the  same  as  topology  of  pointwise

convergence. If you do not know this terminology from function spaces you are excused from

understanding this ok. When you come to that and your analysis teacher says this is pointwise

convergence then you will say oh this, I know that is the other way around; it is actually what

is happening. 



Since we have not studied any function space topology, you may not be able to make much

sense out of this remark at this stage ok. So, therefore, let this remark hang for awhile ok? Do

not throw it away it will be useful when you study functional analysis or any function space

topology and so on.
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In order to facilitate the discussion of relationships between  and  where  is a subset of

, let us introduce an important typological concept here. This is just a stopgap definition, but

the concept itself will be useful elsewhere also. So, I am taking this opportunity to introduce

that one here. Start with any two topological spaces ok, By an embedding of   in  , we

mean  a  function   from   to  ,  such  that   from   to   is  a

homeomorphism. 

First part I am taking this subspace , the subspace topology is  restricted to . So,

this is the notation for subspace topology, remember that. So, now, instead of , I am

taking just  restricted to . So, this must be a homeomorphism ok. 
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So, let me elaborate on this one namely, if   is a continuous injection ok first of all, why

because the same  is there it is a homeomorphism. So, it must be an injection and it must be

continuous from  to . From  to , there is the inclusion map composite with that,

that is also . So, there are two different things there this is  restriction right. So, I am using

the same notation  for both of them. So, the original   and this one is   to  here and

then   to   inclusion map. So, if this is continuous that will be also continuous. So,  

must be continuous first of all and injective map right? So, this must be necessary.

It may not be an open map, may not be a closed map, may not be surjective. All these things

are true when you come down here to . Because it is a homeomorphism. If you are here

only continuity and injectivity is still there right. So, this is what you have to assume. So, it

may not be an open map or a closed map or may not be a surjective; however, if you take the

co-domain of  to be equal to the image of , i.e.,  with the subspace topology, then it

satisfies all these conditions. So, that is the definition of an embedding.

The simplest example of an embedding is the inclusion map itself from a subspace into the

original space ok. If we identify  with  via the map  namely  goes to , then we

can think of  as a subspace of  right? Because  is a subspace of  now  is  is

replaced by  and so on. 



Thus an embedding is a direct generalization of the concept of a subspace ok. You can almost

confuse it  with a subspace, but do not confuse it because we want to have some separate

identity for  , sometimes ok. So, whenever it is convenient you can identify this   with

, that is the whole idea here, because they are after all homeomorphic, homeomorphic to

each other ok.
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Let me continue with some more remarks: Given a subset  of  (oh this was my aim ok?) of

the indexing set. So, I am taking a subset of the indexing set we can also define . What is

? product of all 's where  is inside  ok. This is some independent product set and so on.

So, what is the relation between the  and  then? There is the obvious projection maps

from the larger's this one  to .

What  does  it  do?  Just  ignore  all  the  other  coordinates.  Suppose   consists  of  only  two

elements.  Take   and   ok?  From   to   or   to  ,  you  have  the

projection maps right. Similarly what do you do in the general case? You just drop out one of

the coordinates or several of the coordinates, retain the rest of them as they are. So, this is

what is   is doing here   of   to   retains all the   coordinates inside   ignores all of

them inside .   equal to , this is all I have.



Because there are no other coordinates here. All those coordinates which are here namely, all

those 's inside I they are there ok. Once again from the definition of the product topology,

this topology this product is nothing but the induced topology on  , with respect to the

family  of coordinate projections.

It follows from the above lemma that all the 's are continuous ok? No matter which subset 

of  you take ok? This  is fixed now this  is continuous, why? Because the  coordinate

of this one  nothing but the old . So, all the  coordinates for  they are continuous.

So,  is continuous we shall refer to these maps  also as coordinate projections.

It is like  going to  ok. So, we have been using all these things in the case

of  and  and so on. So, only those practices we are putting in a general setup that is all

ok. So, we shall refer to these maps also as coordinate projections. 

Let now  is ; that means, the left out indices here. And let us assume that both  and 

are non empty. This is a standing assumption of course, it is easily seen that the map 

from  to , is a homeomorphism. This is a 1-1 map is clear. Onto is also clear. So,

bijection is obvious here set theoretically. Why this is continuous? Look at any coordinate

projections here ok, they are all the old one of the 's or  belonging to .

So, they are continuous if you go from here to this way , the same coordinate functions

will give you that that is also continuous ok. So, this is a homeomorphism that preserves the

projection maps the  projection here the  projection here this same thing it is more or

less like the identity map ok.

So, this is the way we identify  with , right. The beauty of this notation is now it is

independent of the order on the indexing sets. Therefore, I can write  or . It

will be the same  up to homeomorphism is what you want to say ok. In particular, for any

fixed , we get an embedding of  in  defined by  going to , see  is varying

over ,  is fixed which is inside .



So, the whole thing will be in . So, this is just like the example wherein you take  going

to  or   going to   or   going to   or the other way round you can take 

going to  right. So, all those are embeddings. So, that is why the word embedding was

defined just before ok these are all embedding. So, the partial products can always be thought

of as subspaces in various ways, you may say horizontally and vertically and so on. So, these

coordinates can be thought of as horizontal and these are as vertical,  when you partition the

indexing set into two subsets,  and .
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As a further special case of this, assume that   has at least two elements then given any 

belonging to , take  ok. Then you have to fix an element  in the rest of them ,

then what it will give? It will give you various embedding parallel embeddings, of . Inside

, instead of , it will be a smaller . So, this is a special case which I have already

explained with examples, alright. 
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There is more interesting thing, I have to tell you. By taking finite intersection of members of

a subbase, we of course get a base , for the topology. How does a typical member of this

base look like? In the case of finite product we know that these are nothing but prototypes of

rectangular boxes, interval cross interval cross interval and so on right, right.

Especially, when each  is ; however, observe that in the case of infinite products at most

only finitely many of the coordinates will be restricted. What is  inverse of... let us say what

is  , where   is an open subset of  ? Just   first coordinate cross the entire of

, in our notation here ok.

Take   right.  In  one  particular  case  here  ,  you  have  taken   as  to  be

singleton to fix one point there then you have got embeddings. Now, I am looking at inverse

image of whole set . So, the second coordinate onwards will be completely free. So, that it

will look like  cross the entire of the space built upon  except .

Suppose similarly  you take  ,   will  be free again only   will  be restricted  

coordinate will be restricted   will have only   restricted all other coordinates are

free. Therefore, the intersection will have only  and then rest of the coordinates are

all free no conditions there. 



So, this is not a box this could be especially so when , we are taking all of them

are , the other coordinates are freely varying infinitely unbounded right? So, this is what we

have to careful here. Except the finitely many case is fine just like the box, but in the case of

infinite products at most only finitely many of the coordinates will be restricted.  

In other words, if  is a non empty member of , then  just assume that  is non empty

that is all;  ok, equal to  for all but finitely many  belong to  what I am assuming?

 is a basic open set ok? I am making the comment on basic open sets here. In view of the

remark (iii) this can be put as follows. This I have already told you how every member of 

looks like; that means what? 

Homeomorphic to,   where   contained inside   is such that   which is   is

finite. So, this is co-finite and   is an open subset of   is finite   itself will look like

,  only  ,  but  every  member  of   looks  like  that

.

(Refer Slide Time: 25:48)

So, coming back to the finite case. Suppose  is finite. The subbase  gives rise to a base 

which  coincides  with  the  base  that  we  have  taken  for  box  topology  namely  take  all

's ok. For instance, when  is just two element set you have to note that



 is just  just intersection which this will says the first coordinate

is restricted inside , second coordinate restricted to  therefore, it is .

However, as soon as the indexing set j is infinite the two topologies may be different. In any

case  you may check  that  the box topology is  finer  than the product  topology.  This  is  a

handicap in getting continuous functions into the product of 's infinite products with box

topology.  The 'if'  part  of  the statement 2  of  theorem 2.70 does  not  hold,  as seen by the

following example.

See in the product topology we have the condition number 2 there. A function is continuous

if and only if all the coordinate functions  those are continuous ok. So, I will show you

now an example very easy example which will violate this one in the case of box topology

ok. 
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So, put  equal to  with the usual topology for all  and  equal to product of 's. So, I

am taking a countable family here ok indexed by .



Take  from  to  be the function  ok. I think I wanted  here. Let us see

which one we work  would not to do  is what I wanted. Then, each  is continuous ok;

however, the function  from  to  the product space given by  is not

continuous. That is the claim. For instance the set  which is a product of infinite copies of

the interval  ok.

Look at the interval  is a neighborhood of  in the box topology. What I am taking?

Infinite product of  is neighborhood of  in every interval . So, the product will

be a neighborhood of   in the box topology All the coordinates  , and that is  

because all the coordinate .

But for no open interval  around , we have  is contained inside , can you see that? So,

for that what I needed here is  going to  not . 

So,  is a bounded interval we take some interval ok. So, I should say that given an open

interval here ok;  of something must be inside , that is the continuity. So, that is violated

this is not true ok.
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So, an interesting property of the projection maps is that each  from  to  is an open

mapping. It is enough to show that   is open for each basic open set   inside . So,

here you have to be careful showing only for sub basic is not enough here. Because you are

taking intersections and image of intersections may not be intersection of the images ok. You

have to basic open sets, unions will be ok. So, for basic open set if you show that you are

done ok, you will be careful.  where  is a basic open set I should show that it is open

inside  for every  ok.

So, let  equal to intersection of ,  ranging from  to . This is how a typical a basic

open set looks like. Finite intersections of subbasic open sets. So, this will be basic open set

each 's non empty open subset of . Now, what is ?  depends upon what  is.

If   is one of the 's here, then  is precisely . Remember in the standard notation

this will be nothing but   whatever   terms cross the rest of the all

other indices, the entire spaces 's therefore, its  projection would be just  where  is

equal to  equal to .

If   is not equal to any of these first   coordinates ok? If  is one of the other indices, then

 will be just the whole of  ok. In any case, they are all open subsets on the right hand

side.  Therefore,   is an open map alright.  All coordinate projections are surjective maps

because I am assuming that all the 's are non empty that is important here.

Otherwise the product will be empty even though some of the 's may not be empty even if

one of them is empty the entire product is empty. So, you are assuming that then each  is a

surjective map also we have seen that a surjective open continuous map is a quotient map. In

other words, each coordinate space here   with which you begin they are all quotients of

the product space ok.

So, this any surjective continuous function then you can give the product we can give the

base the  quotient  topology if  you do that  first  take these  's  take the product  and give

quotient space you will get back  the original topological space, that is the meaning of this.

How did you do this? Just by showing that each projection map is open map ok. The same



thing applies instead of one single  you can do it for a bunch of 's.  to  which we have

discussed earlier because that is also surjective open map.
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So, I want to discuss a few more things here. Just as in the finite case you have , let us

consider the case for example, all the 's are   now, one single space ok. Then, we have

introduced this notation remember that  or  whatever now I am taking the indexing set

as , it is  is what? Is product over , but all the 's are equal to , the same topological

space, same set same topological space ok. 

Just like in the finite case, we can define the diagonal set to be all those 's such that all of

them are equal to each other equal to one single  belonging to , ok? That is the definition

of diagonal. The map  from  to this  given by ; see when you want to define a

map into  , what you have to do? You have to just mention all the coordinate functions

here.  which you can write it  ok that must be  for all  that is the definition of this

map .

So,  it  will  give  you  an  identification  of   with  the  diagonal  by  which  I  mean  a

homeomorphism or here in the case it is an embedding of  inside  ok. With respect to

this embedding, you can identify  with the diagonal in , ok. 
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So, I am just giving you more elaborate explanation here;  is injective and it is on to . It

is continuous because  is identity for all , the coordinate projections  is , this is what

I have defined. 

So, they are all continuous. So,  is continuous, also for any open set  in  ok?  is

open in  ok? That is by definition is a subbasic open set. How does  look like?  You

start with an open set   in  , consider the projection map  . Now, you take the inverse

image of  is an open set in . That open set intersection with  is precisely  is

. 

Hence,  is an open set inside  which means  is an open mapping into . So,  to

,  is a homeomorphism ok? 
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So, let us stop here. Let me just give you one exercise here, namely take subsets  inside 

especially this exercise is for infinite products ok. Look at the product set  ok? This is like

a box the  coordinate is , .

But this infinite product I am taking, its closure is the same thing as closure of 's then take

the product. You know whenever infinite processes are there, you have to be careful with the

closures right. So, you better do not believe this one, but you know try to disprove it or try to

prove it only after proving it you believe it alright? So, this is the exercise, any doubts? Ok.

Let us stop here.


