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Welcome to module 3 of Point Set Topology course. Last time we had taken a cursory

look on what are called as normed linear spaces. They where seen to be an immediate

generalization of the modulus function on the field of real numbers or complex numbers,

ok?

Today we are going to take one more step towards generalization. Once again we go

back to this modulus function on , this  denotes, remember, the set of all real numbers

or the set of all complex numbers, any one of them. So, take the distance function 

where  and  are elements of  to be the modulus of , ok?

Inside the real numbers or inside  maybe complex numbers this actually coincides

with the standard notion of distance. So, it is called, you can call it a distance function.

What are the fundamental properties of distance function? Just like, what we observed

yesterday, about the modulus function itself, now those three properties will be picked up



today also. What are they? The 1st thing is the distance is always a non negative real

number and it is , if and only if  is equal to . 

The 2nd thing is a distance function is symmetric   is the same thing as  .

That is why it is called distance between  and , distance from  to  is the same thing

as distance from  to  so, that is the meaning of this. The 3rd one is, more clearly this

time, is triangle inequality distance between   and   is less than or equal to distance

between  and  plus the distance between  and . So, if  are three points forming

a triangle, this rule just says that the length of any side  to  is less than or equal the sum

of the lengths of the other two sides namely,  to  and  to . So, this is much direct as

compared to the norm, norm of  plus  was less than or equal to norm of  plus norm of

.  To interpret  that  rule  as  a  triangle inequality  you have  to  use  the vector  method.

Represent , represent  as vectors, viz. line segments from  to the point , if you take

the arrow from  to  , and then   to   and then take their sum that would be the third

point.

So, now the end points become a triangle that is the meaning of the norm of  plus  is

less than or equal to the norm of  plus norm of  ok. So, we take exactly those three, but

formulated now in terms of  , ok?   equal to   or what does it mean modulus of

 equal to  ok, which is norm.

So, modulus of  minus  is equal to  implies  minus  is ; that means,  is equal to .

So, this is identical with the condition 1, which we had called norm 1 (N1). The beauty

of this one is now the condition is independent of the additivity on the vector space ok.

So, that is what has happened.

Similarly, the 3rd condition is independent of the additivity, you do not have to take

norm of  plus  there is no  plus  you know distance between  and  is less than or

equal  to   and plus this,  plus is  by the way the on the right-hand side this just  real

numbers  in  addition  ok.  So,  the  left-hand  sides  here  or  the  starting  things  here  the

conditions they are independent of the vector space structure on . And that allows us to

make a sweeping generalization that is what we are going to do.
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So, I am repeating it here once again, if you take the conditions 1 and 3, they here are

similar to N1 and N3,  this  N1 and N3 were  the norm for  the norm condition same

condition this was whatever you called positive definiteness this was triangle inequality.

But,  second  one  seems  to  be  somewhat  weaker  right?  whereas,  the  N2  there  was

something about alpha times , if you take the norm of that modulus of alpha came out

ok.

Norm of alpha x was equal to modulus of alpha into norm of x so that was quite a strong

condition, but this is one does not seem to replace N2 in no way. here at all. it may be

true, but why this is so fundamental? So, that is something which you have to think about

ok. But how to derive this one that is not all that difficult ok we will check into that.  
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So, right now let us make the sweeping generalization namely start with any set  now.

Remember for a normed linear space we have to start with a vector space . So, there is

no extra structure it is just a set  here. Now, take a function  from  to  the

norm was directly a function on the vector space; the distance is between two points that

is why I have take  to  a function like this is called a metric, that is a name

we are going to give ok?

Or you could have called it a distance function. So, classically it has been called a metric.

So, we are going to call it a metric, otherwise you could call it distance function also. So,

what is the condition? There are three conditions, which you can call as axioms of metric

space.

Positive definiteness which corresponds to  equal to  if and only if  equal to .

Symmetry   equal to  ; triangle inequalities   is less than or equal to

 for every  and . So, take these three conditions here which are true

for modulus function on , generalize it all sets, exactly these three conditions only, that

is what we have done. Such a function will be called a distance function or a metric on 

. ok?
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So, what we have is take any set  and a metric on it, the ordered pair  is going to

be called a metric space ok. But, quite often we will just say  is a metric space without

mentioning what is our . Quite often the distance function, the metric is understood by

the context ok?

Or it  is mentioned just  a few minutes back. So, you do not have to again and again

mention it that is the only reason why you have to do that one, just to save some time;

otherwise logically every time you have to say   is a metric or metric space then

only it makes sense ok. Is that clear?
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Now, one sweeping generalization definition is over that is all. So, slowly you have to

build up the theory ok, just like what we have done were subspace of a normed linear

space. What is it? It is a vector subspace and then the norm is restricted to the subspace.

Similar way take any metric space ok   take a subset   restrict the metric   to

, say , then you will get a metric subspace. So, then what you can say 

is a metric subspace of  ok. So, this is a definition.

 is subspace subset of ,  is restriction of  on  which is a subset of ;

 is defined on  , take the restriction. All those properties will be automatically

true  for   ok?  So,  we  can  just  say   is  a  sub  metric  space  instead  of  my

mentioned  etc.

We can quite often write it as same  also quite often restricted function we use the same

notation ok this is just to save time and you know instead of cumbersome, too many

notation that is all. We can just say  is a sub metric space of  ok. So, that is the just a

second definition after making a metric space we have made a metric subspace. Then

slowly we have to develop a number of terminologies and theories.
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So, all based on similar experience with modulus function, and  what it is doing for real

numbers or complex numbers. Remember that ok? So, here are a few more terminology.

So, start with a metric space take any point in the space, take any real number between 

and , any positive real number.

Now, by an open ball of radius  and center  in ; this is the definition now ok. What is

the meaning of open ball? An open ball always has a centre and a radius, radius must be

some positive number.  It is not clear, what it is, you know open ball is an open ball ok?

What is it? It is the set of all points  inside , which are at a distance less than  from ,

 is less than . That is an open ball. Just put in equality also here,  less than

or equal to   allow equality also here then you get a closed ball. So, we will use the

notation  for open ball and  for closed ball this  denote the center,  denote

the radius and  denotes the metric.

In the same space , same set . If you change the metric  to some other metric these

balls will be different, obviously, ok? So, that is why you have to put that  also there,

but if you understand what this  is, just like I can call  is a metric space here also I do

not need to mention , then I will have a shorter notation.
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Namely   is   that   is not mentioned right that   is understood. Similarly,

 is  ok. This is provided you know what metric with respect to which we

are speaking. Alright? So, now, you know a few more definitions.
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So, let me again go back to emphasize that our standard example with which we begin is

just the field  itself together with  equal to  this was the starting example

after all. So, this first example, this is called the usual metric on  or  whatever coming



out of the modulus function ok, it is also called Euclidean metric because it is so ancient,

goes back all the way to Euclid ok, more than 2000 years old, ok.

So, in that sense if you take whatever we have defined namely take a metric on  restrict

it to , then you will get a metric subspace, but this function is the same ok? When you

take  and  as real number, when you take the modulus of  it is the same thing as

when you take them as complex numbers ok. So, this is the first example of a metric

space and a sub metric space  is a sub metric space of , ok with the usual metric.
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So, the second example here is: Take any normed-linear space that we have studied last

time a vector space together with a norm. Then you define  just like we defined

modulus of   you define norm of  ;   is norm of . Then D1 is first

one follows directly from N1 right, what is D1?  is , if and only if   equal to ,

 means norm of  then ; that means,   is equal to  so,

that is N1.

Similarly,  N3 which is  triangle  inequality  stated in  terms of  vectors  is  equivalent  to

triangle inequality stated in terms of the distance function D3. So, they are fine, but what

we wonder is this number 2. How do you get it.  equal to , that is  here

 is by definition I want to show that it is equal to  right,  is norm of

; it has the symmetry property. that is a point.



It is minus 1 times norm of  minus  and  minus  can be written like this, but this now

 comes out with a  modulus that  is  now just   so,  that  is  equal  to  .  So, the

symmetry property of the norm function, which is much weaker than ok modulus of

alpha times something coming out alpha coming out and so on, that is just forgotten you

do not need that one.

But, we have retained something else namely the symmetry ok. So, that is the beauty. So,

this is definitely going to be something more general ok? If I just write  here,

there is no way this  will come out;  will not come out in general there is that is not

part of the axiom whereas, if your metric is defined using a norm then that is true ok. So,

that is what I want to repeat here. First of all, whenever we have a metric coming out of a

norm then we call it a metric associate with the norm.

In short, we can call it a linear metric. The linearity is coming from norm of  is equal

to   times norm of  . And of course, triangle inequality; triangle inequality is always

there. So, number 2 makes it a linear metric here ok, but in general this is not a part of

the definition of the metric we have to be careful about that, ok.
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And whenever such a property holds, we may indicate it by writing  whatever norm

you have taken. Suppose there are two different norms on the same vector space v they

will give rise to two different metrics. So, which one? So, you better tell that. So, in that

case suppose if norms are written as  and , two different norms then I can



say correspondingly   and   are the metrics. So, this is the way we will treat these

metrics related to the corresponding norms, ok.
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If  is a linear metric, it has two additional properties. So, I repeat it. I have already told

you one is this  is   times , where   belong to ,   belong to   ok.

The second property which is also hidden there is that distance between , and 

(note that   and  makes sense, because I am working inside a vector space  

now) is same thing as what? Norm of  minus ;   plus  minus  plus ,   cancels away

is equal norm of , which is equal to . So, this property is additivity you can

directly state ok, on a vector space if you start with the metric suppose we can put this as

a condition. So, one can have this as condition it is satisfied with the linear metric.

But, in addition I can put this as a condition for an arbitrary metric on a vector space,

then  it  will  be  called  translation  invariant  metric.  A  linear  metric  is  automatically

translation  invariant  ok  this  condition  itself  is  called  translation  invariance  of  .

Similarly, it is multiplication invariant; you can say this is scalar multiplicative namely 

does not come out directly  comes out as  ok.

So,  something  is  not  a  linear  metric  if  even  this  condition  or  this  condition  is  not

satisfied, that is easy way of checking whether a given metric comes from a norm or not

ok. If it is then this will be satisfied, but that does not guarantee that it is coming from



then there is a likelihood that it may be coming from ok. On the other hand, if these any

of these condition is not satisfied then you are happy ok? this is not a norm. 
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So, let us have something now which is  not coming from a norm at all or maybe coming

from norm, but we have not bothered, we can directly define them ok. So, there are lots

and lots of such metrics, which arise without reference to any norm. Let us see a few of

them ok. Start with any set . Define this delta.  equal to  if  and equal to 

otherwise; as soon as  and  are different, it is .

This delta is actually the opposite of the dirac delta function in analysis ok? So, that is

the, you know contrast here. It is straightforward to check that this is a metrics. What you

have to check?  0 implies  is equal to  that is built-in in the definition here ok,

 is equal to  that is also built-in in the definition.

Triangle inequality takes two more seconds. You just think about it, why this satisfies

triangle inequality? It does not take more than two seconds that is all you have to think

about ok. So, this is a metric and it has a name. It is called discrete metric not Dirac

metric ok yeah. So, this is discrete metric.
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Next, I will give you something which is quite non trivial out of the blue. I will not

explain today,  how it  came,  but  I  will  just  give  this  much,  today you  have  only to

understand the computational aspect of it here. I will do part of it only and leave the rest

as an exercise. So, what is this? The chord metric. It is defined on the set of complex

numbers it is not coming from any norm ok, at least not on  as a vector space.

So, this   for chord   from   into   is defined as   is twice the

.... The numerator is quite close to a norm now its twice the norm of module of

.

But,  there  is  a  denominator  here  which will  kill  all  these  properties  ok.  What is  it?

 into  whole thing raised to half, the square root of the product of

these two  and , ok. So, that is the denominator this is the definition

see I have divided, but this is never .

So, I can divide. So, this makes sense. So this is now a real number ok? a non negative

real number. If it is , the numerator must be ; that means,  is equal to ;  is .

So,  is actually equal to , ok? So, this satisfies condition D1. Next,  look at  is

perfectly  symmetric  here  because   is   and  these  things are  you  can

change this stuff to here that is all. So, this is symmetric.



So, what is difficult here? The difficulty is; not very difficult either, but it is not quite

easy either is in proving the triangle inequality. By the way, in all these ‘new’ examples

triangle inequality verification is the most difficult part ok? Other things if they are there

true, come easily. If they are not true, you cannot help it. they are not there. Over, ok. So,

so let me help you to see how the triangle inequality comes here. I will not do the entire

computation.

The first thing is there is some inequality of complex numbers take   and , any two

complex number ok. Then  is less than or equal to  into .

Where is this coming from? Look here. It is a square of the denominator there. If you

take the square root so, modulus of  is less than or equal to this one. So, this is

the  first  inequality  that  you  have  to  see.  So,  this  denominator  here  is  bigger  than

. The square is not there now.

This itself is not difficult. You have to just expand the left hand side.   modulus

square is  nothing but   into  ,  which is  same thing as  .  Now,

expanded, and collect the two central terms namely twice real  part of  . It  can be

replace . Then you will get this ok.

So,  that  is  the  explanation  for  this  one.  There  is  another  one  here.  Though looking

somewhat threatening, but this is much simpler this is an identity. It is a product of two

terms on the LHS here and it is a product of two terms plus product of two terms on RHS

here. So, there are 4 terms here and 8 terms there.  But you can immediately see that four

of the terms cancel out in pairs-- minus  here plus v here and  z 1 z 2 z 3 bar minus z 2

z 1 2 z 3 bar.

So, something you will cancel out what you are left with, what you will get is same term

here so, this is an equality, ok. Once you do this snd combine the two,  triangle inequality

will  come very easily ok? So that part  I  will  leave it  to you. So, I  leave the further

calculations to you as an exercise alright?
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Now, we go one step ahead here look at what is called the extended complex plane. In

this you take the complex numbers along with the infinity one single infinity ok? Don't

do much of algebra there, but you can do a lot of topology and analysis that is why it is

there, this extended complex plane. So, one extra point set theoretically that is all, but

now I want to extend the metric, the chord metric to this set . What you have to do is:

whenever both of the points are in , this is the formula.

So, if one of them is infinity I have to define what is the meaning of this namely, I have

to define take any  in the first slot and in the second you have , what is  is

what I have to define. So, what I do take  here. And let  go to infinity. That take

the limit of this expression as  going to infinity, ok?

What we get is this formula of course, instead of  I am writing  here that is all. So 2

divide by  raised to half. Work it out. It is not very difficult. How do you take

the  limit  as   infinity?  This  is  infinity  by  infinity  method  right?  Do  not  go  to

differentiation etc. Just pull out  that is all.

Pull out mod  here in the numerator, in the denominator,  will come then raised to

half. So,   that will cancel out. Then take the limit it will be easy it will be just this

much ok.  This will define , whenever one of them is infinity.



Finally, when both the points are infinity what should I do? I am forced to define that

equal to 0 there is no other choice ok, take this as definition. Now, you have to verify

that for this extended thing also the triangle inequality is true ok.

So, z infinity you take some other point here ok.  some other  and then you have

to show that this inequality this is not very difficult. So, that also I will leave it to you as

an  exercise.  So,  extended  complex  plane  has  a  metric  here.  So,  because  of  this

denominator here we were able to do that.

If  you just  take the linear  metric   you could not  take this limit  as   tends to

infinity. Now, you see why the you know the geometry or analysis whatever you want to

say is reflected here so, ok. More about this one I will tell you when the time comes,

alright.
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The  chord  metric  is  very  important  in  the  geometric  function  theory  of  1-variable

complex numbers ok. So, the geometry involved here will be explained to you a little

later alright. So, let us take a break here today we have done some good work. So, next

time we will see more.

Thank you.


