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Welcome to module 29 of Point  Set Topology part  1 course.  So, today we will  pick up

another  topic  Product  of  Spaces.  Again  within  the  our  general  topic  of  producing  new

topologies new topological spaces out of the old and so on. So, recall that we have already

defined what is called the box topology on atleast finite products right? In fact, we have also

done it for infinite products.

Now,  we want  to  bring in  the  most  natural  way of  doing this  namely,  the  function  the

theoretic approach to the products not through sub base and basis of course. We will also see

sub  base  and  basis  here  finally,  just  like  we  did  while  understanding,  set  theoretic

understanding of quotient spaces. 

It  is  very much important  to understand the set  theoretic  aspect  of of a product.  Namely

infinite products ok? An order implicit order on the indexing set is present in the back ground



when you take finite products you write it as  the indexing set has been

given a very nice order  and so on right.

We should come out of that you know, it is like a baby starts learning bicycle, she is given

the support wheels to begin with. So, at that time support wheels are necessary. The order on

the indexing set is like support wheels to understand what is going on. To begin with, but it is

a hindrance later, in the general case ok? 

So, we should get rid of the support wheels. So, let  where  is the indexing set, be a

family of topological spaces ok. Then look at this product space the Cartesian product space.

What is the product set first of all. What is it that is what I want to understand. What exactly

is the set theory? Ok?

And then on each  if you have a topology then what is the corresponding topology on the

product ok? One of them we have defined, but is there only one, or there are some other way

of doing it. So, that is the kind of thing you want to understand ok? And the one which comes

out from our pursuit here will be called the product topology. Earlier one which you had got

was called box topology. We shall also compare these two things.
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First of all we must understand correctly what is the Cartesian product set ok, where s are

some indexes families of sets, ok? I repeat. If  is a finite set, the indexing set, we usually put

an order on this indexing set and think of the product as the set of ordered   tuples ok?

, where  comes from  comes from  and so on  comes from .

That is what we understand by Cartesian coordinate set as such. And then this notation can be

used , ok.

We also know the choice of order on the indexing set is immaterial  can be written

as  also, for most of the time unless you are really doing some geometry something

like binary theory and so on. So, there it  may be of some value some importance not to

change the order ok. Certainly in topological considerations you do not see any role of this

one right? ok.
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So, let us be done away it.  We shall altogether get rid of this order so that this concept can be

easily generalized. Recall that ordered   tuple , I am writing single  for  ,

what is it? It is a sequence of length  taking values in  right? 

So, if we get rid of the order we can still think of this as a function on the set  of  elements

which was the indexing set there ok? And the sequence taking values inside the union of all



’s of course, with additional condition that the  image of  now I am thinking of  as a

function, which I write it a , the  coordinate, that is an element of  ok? We see that in

this form, it immediately generalizes to describe the product when  is an arbitrary set also

ok?
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The Cartesian product we can write it as , instead of  etc, the whole product set

, I am writing ok? Or this other notation  , this is defined to be the subset of all

functions from indexing set   into the disjoint union of   with one extra condition

that the image of  under  is inside , for each  in , this must be true ok?

So, we will allow this you know product notation which is independent of any order on  ok

this the left hand side notation is a short notation temporarily for us. Also element of this

product being functions, we will represent by  like this one like a sequence as a sequence.

So, it is no order here, but we can use this notation ok generalized notation.

What it means is  coordinate function  value of , or , that is the meaning ok? So,

they are functions now on the indexing set. An element   is also denoted by this sequence

following the practice of  ordered   tuples  or sequences.  The assignment   going to  



defines the functions   (or , I shall use both) from  to , which we call  coordinate

projection ok?

Note that  can also be thought of as the evaluation map. Take a function here look its value

on the element   that is evaluation map ok? So, these are different ways of looking at the

same concept here. 
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Observe that the product is empty even if one of the   is be empty, because there is no

function into an empty set. Thus we shall always assume tacitly that each   is non empty

while discussing the product. Also we can further assume that the indexing set is non empty.

Otherwise there is nothing to work on alright? 

Not only that we will assume quite often that indexing set has atleast two elements. If there is

only one element it is just . There is no need to worry about all this concept. So, we are not

discussing anything whatever about products in these trivial cases. Usually for the indexing

set must have at least two elements, and each  must be nonempty ok. 

It is easily verified that a set theoretic function  from  to  is uniquely determined by the

families  belong to  of functions  from  to . 



This is by definition,  is equal to . If you know all these functions then you know 

and conversely ok? 

Of particular importance is the case when all the ’s are same set , ok? Nevertheless while

defining the product we will treat them as if they are disjoint copies of  ok? This is just for

logical reason there is nothing more than that. The condition that the  coordinate of  must

be inside , that must be clear. We can then use another notation ,  you can write it as

 right? As we are doing with Euclidean spaces  right?   etc.,  we do not keep on

writing , we use a shorter notation.  

So, the same notation is available in the genral case, only when all  's represent the same

set. Then you can write  ok? What is this? This is just set of all functions from  to  that

is all, the extra condition disappears. A further simplification in notation in practice is when

cardinality of  is . Instead of writing  you can write , just like we do for euclidean

spaces , right?

So, that will also do. Then what is exponent  ? It is a natural number. Strictly speaking a

natural number   is an equivalence class of a set with finitely many elements, depends on

how many elements are there in that set. So, that is why this notation is also valid this is all

quite logical no problems there.
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The relevant and familiar result in analysis is that a function  from  to  is continuous if

and only if each coordinate function   which we have just denoted by   ok? Each of

them is continuous. I am not going to prove this one. This we all know. We are taking that for

granted. This  is given the usual topology which is induced by a metric, there are several

metrics giving the same usual topology right?
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In particular we note that  the coordinate functions themselves are continuous. Therefore, in

a general setup when we move from  to , and then from  to  different 

's also, what we want to retain is the coordinate functions must be continuous ok? 

In other words we have started with a family ’s of topological spaces. We are hunting for

some nice topology on this product set,  that  topology should satisfy that  each coordinate

function must be continuous. That is the minimum requirement we want to have. Like when

you take  the quotient  set  and a quotient  function we wanted  the quotient  function to  be

continuous and when you take subspace, the inclusion map must be continuous etc. Without

that  you  do  not  want  to  go  further.  Similarly  here  the  coordinate  functions  must  be  all

continuous. This condition can be easily achieved if we take discrete topology on the domain.

If you take discrete topology on the domain everything is continuous. 

So, why bother then. Because, that is more or less useless. Because it has nothing to do with

the topological spaces that we started with on each  ’s ok. So, why are you taking this

topology at all you will be asked. So, the solution should have something to do with . So,

discrete topology will satisfy the condtion, ignoring all the topologies on individual 's. It is

like you know using an atom bomb to kill a fly right? So, that is not what we want.

So, we would like to take the smallest topology on  such that each  is continuous. So,

that is our motivation now. Experience already shows that such a thing is possible right? So,

let us verify let us go ahead and verify this theorem. 
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There is a unique topology on  satisfying the following properties: each projection map is

continuous  and  given  any  topological  space   and  any  function   from   to   is

continuous if and only if the coordinate functions  are all continuous for each  ok? 
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So, this is the claim. So, let us see how to prove that. Start with all this  ’s each with a

topology. Let us call them . Till now we did not need a notation for them. Now let  be the

given topology on  . Put   equal to what? Start with   in  , take  , why I am



taking that? Because I want  to be continuous, inverse image of all this open sets must be

open. 

So, I am putting them here, for all  . I have to put them for all   and all   inside , take

. So, that is the collection. Call that collection . Whatever topology we want to have

on this   the  product  space,  must  contain  this  family  .  Therefore,  take   to  be  the

topology. take the topology on  generated by . Remember the notation . For this one I

am not using this one here somehow does not matter this  is  ok.

We claim that  this   has the required property.  First  one is  that all  projection maps are

continuous. Well that is how we have managed it here ok? that is continuous fine ok. Now let

us look at the second one. Suppose   from   to   is continuous. Then since each   is

continuous, which we verified just now, the composite will be continuous alright. So, we are

only  to  check  the  converse.  Suppose  all  these   are  continuous.  Then  will   be

continuous? So, converse part is what we have to worry ok?

Suppose  to   is continuous then this is continuous follows because ’s are continuous

composite is continuous. Now we assume   is  continuous for all  .  To see that   is

continuous, we can take members   of the subbase   and check that inverse image of  

under  are open in . 

See here on  , there is some topology tau that topology has this   as a subbase right?

inverse  image  of  subbasic  open  sets  are  open  is  enough  to  check  that  something  is

continuous. You do not have to check continuity on the whole of  , ok? That is what we

have seen earlier we have used that one several times. So, to see  is continuous, we must

check that  is open in  for every  in .

But what is ? It is  for some  ok?  But then  will be 

which is nothing but   operating on  . And   is continuous by assumption.

Therefore,   is  open  in  .  So,  very  straightforward  right?  One-step  proof.  So,  it

remains to prove the uniqueness of .



(Refer Slide Time: 21:09)

Suppose   is  another topology on   satisfying the same two conditions ok. By one, it

follows that  is contained inside , because this  is contained inside  because  satisfy

that  ’s are continuous. Once the subbase is contained inside another topology, the whole

topology is contained inside that one. So,  is contained inside , ok? 

This  means  that  identity  function  from   to   is  continuous.  So,  this  the

meaning of  is contained in . You can take an element here in .  What is inverse image

on under the identity map, it is the same set, right? It must be in . So,  contained in  is

the same thing as identity map the other way is continuous.

Now,  consider  identity  from   to  ,  the  other  way  around  ok.  If  this  also

continuous then two topologies will be the same. So, when is something continuous here?

since   composite with identity is continuous see I have made the hypothesis that   to

satisfies  those  two  conditions.  Apply  condition  2  here.  Condition  1,  I  have  used.  Now

condition 2, I am going to use.

See condition one says that it is large enough. condition 2  puts restriction it brings down. So,

that is what is happening here ok. So,  they are all continuous. So, to verify this identity



map is continuous, I have to verify   composite identity is  continuous, but   composite

identity is  itself ok. 

So,   for each  in , property 1 tells you, is continuous. Therefore,  is contained inside

 ok? Identity map here is continuous means that. Observe how we got the uniqueness of the

topology. So, instead of saying that this is the smallest topology etc., 

What I have said is I have put another condition here. The condition gives you that  is large

enough to make all ’s continuous. The second condition puts some restriction on . That is

continuous functions from   into  . So, first was from   to other coordinates spaces.

This second condition is for function from any   into  , a function is continuous if and

only  if  their  coordinate  projection  coordinate  functions  are  continuous.  So,  these  two

properties define the topology uniquely this is the theorem.
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The proof of the above theorem gives two descriptions of tau two different pictures of , half

the picture on this side other other side that will be complete picture. what are they? One: 

is the smallest topology of  such that all ’s are continuous. Second: it is the topology 

with the subbase  equal to the collection of all  , where  belonging to  ok. So,



this description is more handy for working you know for working out things this will help.

The first one will help for conceptual understanding alright?
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So, next time we shall study product spaces in more detail.

Thank you.


