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Welcome to module 24 of Point Set Topology Part 1. So, after discussing some kind of a

general method of obtaining new topologies with bases and sub bases and several examples

of that type we will continue one more very important example again. Consider the Euclidean

space   with the usual topology. We know that it is induced by several equivalent norms

and thereby, by associated linear metrics which we denote by  etc,  ok?

Out of which the so called round metric, the Euclidean round metric given by  equal

to ; this being the central it is called the usual metric. All of them gives

the same topology, is a God's gift for us. Let us have a look at this picture. For either just to

recall, or just to feel good about it.
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So, this was the the topmost one here, was the  ball of radius 1. So, these were some 's

this is the circle was the   ball and this was   ball right. So, like this there was such a

relation and we have discuss this one quite in depth. Now, let us concentrate only on the

square and the circle; the square corresponding to d infinity and the circle corresponding to

the  norm ok.
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Once again I recall  this  one namely this picture tells you that inside the circle  you have

squares, inside the square you have again circles circle square circle square and so on. They

are all centered at one single point, but that is not even necessary, you can take any point

here. you can put a circle inside the square and then a square inside the circle and so on.   

At every point it is true. So what does this mean? If you want to control some phenomena by

the circles, control it by the squares automatically it will get controlled by circle. Control it by

the circles, it will be controled by squares and so on and vice versa.  

So, this is what we have used in several times in elementary mathematics like in complex

analysis we said a complex valued sequence is convergent if and only if both the sequences

of real parts and imaginary parts converges; that is if and only if. So, this is what is going to

happen.  The collection of all these open discs centered at various points that forms a base for

the usual topology. On the other hand the same thing is true for the collection of all the open

squares centered at various points. So, both of them give you the same topology both of them

are  bases.  So,  in  terms  of  our  modern  terminology these  things  are  bases  for  the  same

topology ok. 
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So, I repeat:  be the set of all open discs with respect to the  metric. We have seen that

this forms a base for usual topology.  

On the other hand the set   of all open squares also forms a base for the same topology.

These are we can call them as unit discs in  metric. Indeed the above picture tells you that

the topology is the same. Same means what? Equal to the usual topology, ok. 
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So here is a general theorem. First of all I want to say suppose ,  equal to  and  be any

bases for   ok? Then the collection   read it  as   join   collection of all

members of sub spaces of ; I am taking here  first factor is  comes from  and

second factor comes from  . So, take their Cartesian product, so this will be a subset of

subset  of  ,  ok?  Some author  just  write   here  and  that  can  cause  huge

confusion ok. 

So, I have made this somewhat funny notation you read it as , ok. This is a base for a

unique  topology   on  .  This  is  a  general  statement  now.  Motivated  by  our

observation in Euclidean spaces. Take 's to be  will be given by open intervals open

intervals. Collection of all open intervals cross open intervals is a base for the usual topoloy

on . Precisely the lesson from here.



So, that is what I am generalizing it here now ok. So, claim is that this will be a base for a

topology. So, you have to verify those two conditions (B1) and (B2) ok. Moreover look at the

family  , which is same thing as again by definition I am repeating it here  ,

where 's are in the . This will be also a base for , the same . In particular if you choose

different bases they do not give you different 's because this  is the same ok for all

of them this is also a base.

So,  this  topology tau is  independent  of  what bases  you chose  because  it  is  equal  to  the

topology generated by this  , ok. So, I have to do two things here.  First of all this

, I have to show is a base and then I have to show that  is also is a base for

the same topology. That is all I have to show ok? Two things I have to show.
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So, given  and  have the property I can choose you know  inside

 such that  in . Then  will be inside  that is an element of . So,

condition (B1) is verified.
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Similarly take two members  inside . Suppose this point  is

in the intersection,  what is  the intersection of  this  product?  It  is  nothing but … the first

coordinate must be always in  as well as in , the second coordinate must be in  as well

as in  which is same thing as . This is pure set theory ok?

Then from property (B2) for each , we will get some  inside  such that  is inside 

and  is contained in  for . Then  will be inside  because 

is in  is in  right?

So, we have point   belonging to   contained in the intersection of these two

products and that is a member of . So, this verifies (B2) ok. Therefore,  is a

base for a topology on , which we shall denote by .

 Now, I have to show that this tau is the same as the topology generated by , ok? 
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The  is also a base the proof is exactly the same. Instead of , we write 

everywhere. All these things are true for   also because   and   are also bases for

their own topology, their topology is  any topology is  also a base for itself ok. The same

argument which show that it forms a base. So, if you write  as the corresponding topology

generated by this family ok.

I  have  to  show that  this   is  equal  to  ,  but  now the base   is  inside this  one

therefore,   will be inside  one part is obvious. Now, I have to show that  is inside 

ok? 

To see the other way inclusion, it suffices to show that this family the base itself is inside .

We have observed that one earlier. 

So, I am going to show that  is contained inside . It is same thing as taking one open

 here and open  here and take the product and show that it is in this topology . So, let

 belong to  belong to , ok. Means what?  is union of 's where all these 's

are in . Similarly,  is union of 's where all these 's are in  because they are the

bases for  and  respectively ok. Then  it is the product of the unions which is the

same thing as union of the products. You have to take product of one element one member



here with another member here, member by member, all combinations you have to take, that

is summed over both j and k completely freely.

But this is a union and each of them is inside  right, so union inside  ok. So, what we have

proved so far is that if you fix bases for  and  and then take the corresponding bases you

know , you get a topology and then that topology is independent of what bases you

have chosen ok. Moreover we have got a description of how the members of this topology 

will look like in the product space .
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The  topology  on   obtained  in  the  previous  theorem  this  way is  called  the  box

topology ok. So, in dimension 3 it  actually looks like a box that is  why it  is  called box

topology in all higher higher dimensions also ok. Once you have got it for , you can

imitate it for , we can iterate it any finite number of times.

So, for finitely many products, what will be the bases? Take bases for each of them take

. If you do not have bases, take all open subsets in each of these  and

take that one that itself will not be a topology, but it will give you the same box topology as a

bases. There are much more open subsets inside the product that is all you have to know ok.
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.

So, you can take product of 's where  range on . This I am doing for now not only finite,

but infinite family  belong to , each of them is given a topology and then each topology

has a bases  then you can take these product of 's where  range on  and  lying in 

's. Take all such elements that will be a base for a topology and that topology is box topology

on the product. The proofs etc will be the same. There is no set theoretic problem here at all.
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So, I  have already told you I have motivated then I am just repeating it here. The above

discussion in the example 2.25 amounts to saying that the box topology on   is the same

thing as usual topology given by the Euclidean metric. 

It should be noted that when we are dealing with at infinite family of topologies there is

something  called  product  topology which  is  somewhat  different  from box topology,  ok?

Though  the  underlying  set  is  Cartesian  product,  we are  careful  enough  to  call  this  box

topology ok? Not product topology. 

Later on we will introduce this what is exactly product topology ok. You have to wait a little

bit for that, see the two things coincide in the finite  case is  just a coincidence.  We have

observed  that  in  ,  we  could  pass  on  to  the  maximal  topology.  We  then  imitated  the

maximal in the generaal construction. The round thing cannot be imitated unless you have a

metric. 

In the general cases there is no way of taking square, square roots and summation and so on

there is no way ok. The round thing cannot be imitated. So, that is why we are thankful to this

ah maximal topology which can be imitated ok. 
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So, that is all for today I have few exercises. I will just go through these things ah not the

solutions of course. 
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So,  the first  thing you have  to  observe  is  that  in  this  box topology the projection  maps

 or , they are they are denoted by  and , these are continuous.

So, I am writing it for product of two spaces,  as soon as we verify it for two, it is verified for

 of them also, the same proof here works for all the cases, namely infinite product also.

Next thing is again similar to that. Take any space  and a function into the product ok. A

function is completely determined by looking at the various coordinate projections coordinate

maps. Namely, what are they?  ; any map  from  to   is given by the two

coordinate functions. 

So,  .  So,  both  of  them  will  be  continuous  if  and  only  if  the  function  is

continuous ok. So, verification of this will be very straightforward. Once you do this exercise,

you will get more familiar with what is happening here. Remember to verify that something

is continuous you take a base here and check that inverse image of members of that base are

open here ok? Because here is the original thing is there. So, the base new base has come

here. So, this you have to do directly.



Now here is another example of a topology coming from a base, by declaring a base, this is

nothing to do with box topology though. Take the polynomial ring  in  variables over  or

 whatever. Let us take it  for a while here ok?

 are variables ok? You can add two polynomials you can multiply the two

polynomials you can scalar multiply them and so on, this is actually a vector space as well as

a ring. So, such things are called algebras over this field  is here  ok. For each  in ,

you can assign subset of . What is that? Namely, all those points  wherein

the  function  ,  the  polynomial   does  not  vanish.  I  have  written  here  .  Earlier  I  had

discussed points at which  is actually 0. 

So, it is the complement of the zero set say ok? Just now we know that if I take the Euclidean

topology or the product topology here because each polynomial is continuous these things are

open in the product topology, ok? Euclidean topology, but now we are not going to take the

Euclidean topology or the product topology here. What we are going to take is the following:

show that this collection of you know these 's, where  ranges over all elements of  forms

a base for a topology in .

The important thing here is to verify that   is again a member here. Remember this

just means that this family is closed under finite intersection, it is a strong property. So, once

I have told you that you do not there is nothing to verify. You have to quote that theorem that

is all to say that this is a base. So, this topology which gives you the topology given by this

base is  called the Zariski  topology ok. So, this is  sacrosanct  for doing geometry,  used in

algebraic geometry all the time alright?
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The special case , you know this Zariski topology is the same as the co-finite topology.

Remember what is co-finite topology, a set is open if and only if its complement is finite. So,

verify this, it is very easy. n equal to 1 case only; n equal to 2, 3 etc it will not be co-finite

topology ok.
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So, here is  another interesting topology on   itself. Look at  all  half open intervals  ,

where  a  is  closed.  The  left  side is  closed ok.  Look at  all  these.  You may call  it  ,  the



collection  . This   is a base for a topology on  . What you have to verify? You have to

verify (B1) and (B2) remember that  ok. Union of all  member is  equal  to  whole of   is

obvious,  given  any  a,  I  can  always  take  some   and  take  the  interval  .  So,

everything will be covered no problem.

Intersection of two such things you have to see what happens that is it ok? So, we should

denote it by   itself ok. Since we are not going to emphasize on these notations too much

because notation may change from author to author. I do not want to float one more notation

here ok. So, we will  call it  semi interval  topology, more elaborately we could call it  left

closed right open interval topology.

 If I do this one you will not find it in any literature. In literature it is called semi interval

topology. The semi interval topology can make sense for   also that will be an entirely

different topology. If you care you can say that it is similar, but it is different topology on ,

open subsets with respect to that will not be open subsets with this and so on ok.

Instead you could have taken intervals of this form also and we would have got a space which

is homeomorphic to , means what? It is a topology here there is a topology there, if you take

 or something of that nature, which is order reversing, a reflection that will take half

closed interval this way to half closed interval that way. That is a homeomorphism. But they

are not of the same thing. 

Show that this topology  is finer than the usual topology on . So, it has more open sets or

open subsets of , they are there. 

Last question is here, does it come from any metric? Keep trying ok?  Before the course ends,

we will get a solution, no problem ok?

And then there is another one interesting one here. 
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On the set of integers. Let us define a topology as follows. This is not introduced just as

another example of a topology. This I am introducing as an entertaining application of very

elementary topology to produce a very very ancient theorem in number theory ok, so what is

that? This is due to Furstenberg. Furstenberg was just a graduate student when he published

this one in 1955 ok.

So,  let  us  introduce  a  topology  here.  Given  integers  ,  look  at  the  arithmetic

sequence:   ranging over all the integers. So, let us denote it by  ; this is an

arithmetic sequence ok,   belonging to the integers. Let   be the collection of all

arithmetic sequences .

For each  and , there is 1 so that  is the collection. And by the very notation what we are

going to do? This  is a base for a topology. Let us call this topology F-topology in honour of

Furstenberg ok. 



(Refer Slide Time: 27:09)

Show that each member of   is closed in F-topology. This is a strange thing right. Basis

elements are open, but here they are closed also ok. I do not have to show that they are open.

This is by the very definition,  is contained inside .

Show that no finite set is open in F-topology. So this is not so strange. Finite sets are not open

inside  also ok. Now comes the climax. 

Consider , throw away these two integers -1 and 1 ok? Show that you can write

the entire    that as a union of arithmetic sequences,  , where  is a prime.

You do not have to worry about  and , here  is a prime and  is 0. So,  is taken as

prime number  is 0, look at only those arithmetic sequences.   is union of these

things ok? 

This is also an elementary observation. As soon as I have done that you can conclude that the

set of primes inside  inside actually a natural number is infinite ok?

So, this is quite entertaining. There is nothing deeper here, but for a student who  found it out,

this is a wonderful thing. So, it appeared in AMS notices. So, let us stop here and do next

time. Next time, we will do another important concept namely, subspaces. Thank you.


