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Welcome to module 23 of Point Set Topology Part I course. So, today we will carry on with

subbases. We have motivated the definition of subbase last time ok. So, let  be any family

of subsets of . Take  to be the collection of all finite intersections of members of . 

First of all  will be contained in , all members of  are be there. Two members you take,

their intersection will be there, 3 members intersection will be there. Like that finitely many

members, their intersection will be there in . So, that is  by definition.  is that collection

nothing more, nothing less.

Then  is a base for some topology on . In fact, what is the topology? It will be precisely

, which will be  as well. That part we have seen that it has to be , ok? So, I do not

have to state that one again. So, what we have to verify? We have to verify the two conditions



(B1) and (B2). I do not have to worry about describing  again. Members of  are already

described ok.
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If you take empty intersection it follows that  will be inside  itself may not contain the

element  you see, but when you take a finite intersection empty intersection is also allowed

here, ok. So, that will give you   inside  . So, (B1) is automatically satisfied in a strong

way. See (B1) was that union of members of  is equal to , but here I am putting  itself is

inside. This is stronger way ok, is stronger than  (B1). 

Now, given two members of  , their intersection will be in  , because say   is equal to

intersection  of  .  And   is  equal  to  intersection  .

When  you  take  ,  it  will  be  intersection  of  all  of  them  members  of  ,  a  finite

intersection. Say here there are 5 and here 6, that will be 11 of them together. So, intersection

will be also inside , ok. So, I can take  itself as  to get the condition, condition

(B2) right? What is condition (B2)? Given any point in the intersection there must be a third

one which contains that point and contained in the intersection. I can take to the  

itself because that is a member here.
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So, both (B1) and (B2) are satisfied in a strong way. In any case this is a base for some

topology and that topology is nothing but . Note that, the collection  arising out of  as

above  satisfies  a  slightly  stronger  condition  than  necessary.  So,  it  is  closed  under  finite

intersections right? So, for example, we have seen that the family of all open balls in ,

is a base for . It does not satisfy this strong condition, because intersection of two balls

may not be a ball. So, in order to give proper recognition to this result, lemma 2.11, we will

make a formal definition. 
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Let  be any collection of subsets of a set , ok? Here  is a set. We say  is a subbase for

the topology  ok. So, this definition may look funny, but it is what it is. It is just like a

nomenclature. We do not put any condition on . So, any subset is a subbase for a particular

topology what is it?  the unique topology ok, which is the smallest topology containing 

ok.
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So, I repeat: thus every collection of subsets of  is a subbase for a unique topology whose

members are described very nicely. What are they? First look at the base, the base given by 

namely, take finite intersections of members of  ok. So, each of member of  will be an ar-

bitrary union of members of , which are just finite intersections of members of , ok?

So, it takes no extra condition for the family  to be a subbase for a topology as seen in 2.7

part (ii). If  is a base for , then every member of  is a union of members of . So, every

base   for a topology is also a subbase, because   is the smallest topology   ok. So,  

equal to   means  is a subbase also. So,  is a base is something more stringent, but 

equal to   immediately implies that  is a subbase, there is no problem ok.

The converse does not hold always, not all subbases are bases because condition (B2) may

not be satisfied. Even (B1) may not be satisfied ok. 
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Look at this example. The collection consists of all unbounded intervals inside . What are

they?   or . Look at all such rays. The collection is a subbase for a topology.

This is not a base for any topology neither it is a topology ok. It is subbase for a topology and

what is that topology? Because if you take two members like this ok. With  less than , then

take , that will be the open interval .



That topology is the same as the usual topology why? Because if you take two members like

this ok, with  less than , then take , that will be the open interval . So,

all open intervals are finite intersections of members of   and then we know that all open

intervals form a base. So, therefore,  is a what?  is subbase for the usual topology. Clearly

it is not a base ok.
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So, it follows that every member of , an arbitrary union of finite intersection of members of

. I repeat this one, this is what you have to by heart maybe. Note that a topology can have

many bases and subbases, but a subbase and the corresponding base always give the same

topology, ok? 

So, clearly   equal to  , if   is already closed under finite intersection. Then if you take

further finite intersections, you do not get any new members, they are already members of .

In general, every base is also a subbase, but the converse does not hold as in the previous

example. So, I am just repeating all these things in this part, have not said anything new. 
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Now, I will state a theorem here ok, which will show you the utility of bases and subbases. A

function  from  to  is continuous if and only if  belongs to  for every

member  in , where  is a subbase for .

 If it is continuous take a member  in , it will be already in . Therefore, by definition of

a continuity  is inside : inverse image of an open set is open that is what we have

shown. So, conversely we have only partial condition: inverse image of an open set is open

holds only for elements of .

But that is enough for continuity. Because once this is true for members of ; it will be true

for intersection of two of them. It will be true for intersection of finitely many of them; that

means, it is true for members of  now ok? But then if you take inverse image of the union is

also union of the inverse images. So, this is purely set theoretic fact you have to use. Inverse

image of the intersection is intersection of inverse images. Inverse image of the unions is

union of the inverse images. So, first use this one then use this one to get all the members of

tau prime, their inverse images are open, therefore,  is continuous. 



So, what is the role of this theorem? It reduces the study of a continuous function, checking

the continuity of a function. You have to do it for all members  of tau prime no. You have to

just do it for membes of a chosen subbase that is enough, ok.

For example, you can apply this theorem here in this example ok? You have some function 

to . To check that it is continuous you have to just show that inverse image of unbounded

intervals are open, both  as well as some . For all of them if inverse images are

open that is enough. You do not have to worry about all open sets ok? So, we will come back

to this phenomena again.
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So, a few more comments about bases and subbases; if  and  are two topologies,  and

 are respectively their bases ok. You have chosen some bases.  If   is contained in  

automatically will be  is contained inside . Why? Because members of  are unions of

members of   therefore, their member union members of   also therefore, they are in  

that is it very easy right ok.

What is more useful is you do not need  to be contained . If  is contained in  then 

is contained in   because   is the smallest topology containing   right. So, this is quite



useful exactly same thing is true if you replace ,  by  which are subbases of a same

reason, I have not written down at this one here, but that is obvious.
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.

So, once again, for later use I will introduce these two definitions here  contained in  ok,

any families  of  subsets  of  a  set   (not  only for  topology).  See  here  I  have  defined for

topologies; just means that  is finer than . So, this is the definition of the word finer here.

At the same time  is coarser than . It is just like saying that  is less than  or 

implies , that is all.

So, coarser and finer.  So, you have to get used to these terms. This can be used for any

families of subsets of , same set  . So, in particular, I have given this definition for two

topologies no problem, here are the examples. Discrete topology on a given set is finer than

every topology on that set. Exactly same way indiscrete topology is coarser than every other

topology on that set ok. If  has more than one point then indiscrete topology is strictly finer

sorry, discrete topologies strictly finer than the indiscrete topology. So, strict inequality also

holds that is no problem ok.



(Refer Slide Time: 15:08) 

So, I come back to this example again here. The left ray topology and the right ray topology

ok, introduced in example 1.115 (3). The collection , recall namely,  belonging

to  is a subbase ok. For  not for usual topology, for usual topology you have to combine

both of them. You take   itself only  ’s that will be a topology and that topology we

have taken it is a subbase for  and it contains all elements of the topology except empty

set and the whole set.

This is a strangest thing why because look at this one. Take intersection of   with

, what it will it be? Depends upon whether   is smaller or   is smaller ok. If   is

smaller intersection will be . So, it is a member. So, this family is closed under finite

intersection except empty intersection; it is also closed under finite union. So, what is missing

here to be a topology? What is missing here? Empty set is not there. The whole  is not there

that is all.

So, empty set and the whole set are not there otherwise it is already a topology right? So,

such a base or such a subbase it is actually subbase right, because if the union is not the

whole of  it is not a base. So, this is not even a base. It is not a topology, but it is a subbase,

it is a very strange kind of example. similar remark holds for  also ok.



You can compare these two topologies with the usual topology ok. What do you conclude? I

do not want to tell you. Conclude yourself. This is this is obvious, but you have to keep doing

this kind of thing. That is why I have put it that is all ok. Now, let us make a definition and

illustrate why these things are important ok. 
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Take a function from  to . This is left rays right?  It is continuous if and only if

the set  of all  points   belonging to   such that   is  less than   is  open in  , for all

 is any topological space, here I have taken  with  ok. So, what is the condition

for a function to be continuous? Inverse image of a basic or sub basic open set is open that is

enough. Sub basic open set is all rays .

Inverse image will be just all  points   belonging to   such that   is less than  . If  a

function  satisfies  this  property  it  is  called  upper  semi  continuous  function.  So,  this

terminology is taken from analysis. Similarly if you replace this one by  ok, then what

will be the condition for continuity;  such that  bigger than  must be open ok?  Exactly

similar. If that happens we call it lower semi continuous function. So, these are important in

analysis especially in measure theory.
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So, I have included a few as exercise their examples. A few properties of this lower and

upper semi continuous functions ok.

So, go through them they are not all difficult. So, exercise 1, gives you an example namely

this is called characteristic function of a set.  equal to 1 if  is in  and equal to 0, if 

is not in  ok? So, characteristic functions are lower semi continuous if and only if  is open.

Upper semi continuous function if and only if  is closed. (Refer Slide Time: 19:39)

.



These are highly discontinuous functions, but they have some continuity property. So, that is

very important in measure theory. Your starting point of defining measure and all that ok?

So, here are more. Supremum of any collection of lower semi continuous functions is lower

semi continuous. Infimum of any collection of upper semi continuous function is upper semi

continuous. If something is continuous then it will be both lower semi continuous and upper

semi continuous and conversely ok. 
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These are all elementary exercises. So, take some time to  do them, do not just leave them.

Because  if  you  ignore  them,  soon  these  things  will  ignore  you,   you  give  them proper

attention and time and then they will become friends to you ok? So thank you, we will ah

meet next time again.


