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So, welcome to chapter 2 of the course, I have named it as Creating New Spaces. We shall

discuss some standard procedures of constructing new topological spaces out of the given

ones, as well as constructing totally new ones also. Of course, we shall not just construct

them, we shall also put them in proper perspective, study them a little more. That is all this

chapter is about.

We begin with two fundamental concepts. These concepts, apart from helping the topological

study elsewhere, give immediate methods of constructing all topological spaces, in a general

fashion. Some simple examples that we have considered in the previous chapter in an ad hoc

fashion will now become motivating examples for some systematic studies. I will point out to

them, whenever we come across those things.
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So, welcome to Module 22 : Bases and Subbases. You may as well take one of them today

we will see, but I am already laying foundation for the second one also. So, today maybe we

will just discuss bases because of lack of time. So, the first observation is that start with any

set and a family of topologies on , ok? a family of topologies on . Take the intersection of

all these families. Which means what? All members of  , which means subsets of  ,

which are in every member of this family  's. So that is the intersection, that family will

become a topology on .

So, this is what I meant by saying that creating new topologies out of the old topology. For

example, this one comes into that category, right; 's are a families of topologies. Now, I am

taking the intersection of them. Perhaps this one is a new one, not always if you take say 

contains , then this intersection will be just . So, it is not always a new one ok? That is

why this is a general method, alright.

So, this  is a topology after all, is very important concept for us. The proof is very easy. Let

me just see. What we have to do? Empty set and the whole set are inside . Why? Because

they are there inside every topology. If you take  and  inside of , they will be there in

each , so their intersection will be in each . So, intersection is here.



Similarly, if you have a family of open sets say,  ok? Members of ; that means, what each

 contains all of . Therefore, the union of all  is inside  for every . So; that means,

that union is a member of . So, that completes the proof of this is a topology ok?
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This is just like what happens with vector spaces. If you have a family of vector subspaces,

then the intersection is a vector space. Similarly, if you have a family of subgroups of a group

then the intersection is a subgroup. However, in either of these cases the union utterly fails to

be a subgroup here, vector subspace there the same thing is happening here.

If you take two topologies, the union may not be a topology. Of course, if one is contained in

the other then the union is the other one so, so that is a very special case. In general, union

may not be a topology, but we do not want to give up just like that. So, you will work harder

to get topologies out of these things also. So, what do we do? So, here is another general

method which is actually an application of the previous theorem that you have, ok.
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So, this theorem this is the foundation it is like it keeps helping us again and again. So, start

with any family of subsets ok? instead of taking topologies and so on just any family  of

subsets of , ok?

In the collection of all topologies on  which contain this , there is a unique topology 

which is the smallest. First of all the discrete topology, the entire  contains this one. So,

this family of all topologies containing  is non empty ok. Logically, it is not necessary, but

we can fix it up that it is non empty. Now, I am taking intersection of all these topologies

which contain . This theorem says that such intersection is a topology right? And since all

of them contain  this will contain  also, ok? 

So, one part is fine, namely, we have got a topology which contains  now, ok? But this is

the smallest one. Why? Because it is contained in the each of them because this being the

intersection of all of them. 

So, that is all, so one step application of this previous theorem, one gives you this result ok,

namely,  given  any  set  there  is  a  smallest  topology  that  is  the  unique  smallest  topology

containing , it is intersection of all topologies containing that . Why unique one? Because

if there are two of them their intersection must be equal to both of them right? Yeah. 



So, we can make a definition ok. What is that?
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The topology  namely the smallest topology containing  is called the topology generated

by . If   itself is a topology what happens?   will be equal to   because   is already a

topology, right? So,  everything else contains it so, intersection will be . So, if  is already a

topology no problem, but if  is not a topology then this is a new one.  

So, this is again similar to what you do in linear algebra; you have a vector space, you have a

set of vectors there ok? How do you create a vector subspace which will contain all these

points all these vectors? So, that is the vector space generated by this ok? So the same word

we have taken here, same terminology ok? 

So, this one-step-consequence of the our first theorem this is going to be extremely useful

method of creating new topologies because I may start with any subset of the power set of ,

any collection  of subsets of . That will give you a unique topology, the smallest one that

contains , right.

Of course, what may happen is two different subsets of  may give you same topology

that is possible ok?  may be equal to  ok? 



So, here is a simple exercise. Take  equal to  or any countable infinite set ok? And take 

equal to   minus one single point belonging to  , one point is missing from each subset

here.  Look at  that  collection,  ok?  What  is  the   corresponding  to  this  ?  What  is  the

topology generated by this family on the set of integers? It turns out to be something familiar

to you. Can you see what is happening, ok? I do not mind telling you. This is precisely my

point namely we need to work harder to identify the topology generated by a set .

Like in the case of vector spaces, you give a collection of vectors collection of elements ok,

what are all the elements in the vector space generated by that? They will be all finite linear

combinations of elements from the set. So, that is a description. So, we would like to have a

similar description here ok. So, let us try that.
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So, in order to be able to identify members of  , it  is necessary to establish or invent a

method to describe the elements of the topology generated by  in terms of the sets inside ,

ok? Here  is given ok. So, here again you see the motivation comes from metric spaces. So,

that is why certain things there we have done just in an ad hoc fashion perhaps. Whatever

motivated them there, but now they will motivate in turn, the new constructions here.



Recall that in a metric space , open balls were basic objects in defining the topology for

tau; this  right, open balls right? That is a good example that will guide you, ok. So, how

was the  defined then? Arbitrary union of open balls, alright.
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So, based on that we will do something now, namely we will define another a term here base

for a topology. So, that was the title of the today's topic after all. A subset  of ; that

means, the collection of subsets of   is called a base for a topology on  if the following

conditions are satisfied. First condition is that if you take union of members of  that should

cover the whole of . 

Second condition is that; given two members of  and a point  inside the intersection you

must have a third member in  ok, such that  is inside  contained in . When I say

third member, I am not saying that they are all distinct no, but the point is that  itself

may not be there in , that is the point ok. If  is contained in , then intersection will be

just  and so on. So, those are easy cases. So, you may have two different subsets they may

not intersect, then also I do not have any botheration.  But if they intersect for every point

inside  ,  I  must  have a member of   such that  that  member is  contained  in  the

intersection and contains the point ok. So,  pay attention to this one this may take a little more

time, but look at the set of open balls in a metric space.



This is precisely, what we had proved there. If you take intersection of two open balls, it need

not be an open ball, but every point inside it is contained in an open ball contained in the

intersection,  around each point there is an open ball contained in the intersection ok. So, that

is why we have put this condition. So, that is the motivation from open balls in a metric

space. Once condition (B1) and (B2) are satisfied, look at the topology generated by  now

 that is what the least topology which contains , then we say that this  is a base for 

ok.
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Now, here is a theorem first of all, to characterize what kind of collections will be a base for

some topology, ok. So, start with a collection  and let  be any topology. Will  be a base

for ? This is the question we want to address now. So, this theorem says that the following

three conditions are equivalent. The first condition is that  is a base for  that is our final

goal. 

The second condition is that first of all  is contained in , which is obviously necessary, if

 is  going to be a base for  .  And every member of   can be expressed as a union of

members of . So, this is precisely the result that we proved for open balls. Sorry, In fact,  it

was the definition that we had for the topology from the open balls ok, for  was precisely

defined this way, right. So, that condition comes here. 



Third condition is of course,  is contained inside  is common; and given any  inside ,

where   is inside  .   is what?   is the given topology. So,   is an open subset in this

topology, I must find a member  inside  such that  belongs to  contained in . These

three conditions are equivalent. That is the statement of this theorem.
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Let us go through this proof: (i) implies (ii) ok? If  is a base for , ok? By the definition, 

has to contain . So, that is by definition. The second part is what? That every member of 

can be expressed as a union of members of , ok? So, take  to be the family of all subsets

of  which can be expressed as a union of members of , ok? 

Let this be the family; then I want to show that this   itself is a topology. The proof is

exactly similar to what we did for the open balls. There we had to work harder, here we have

made whatever that work into a definition here; namely, the condition ok. So let us see  be

the family of all subsets of  which can be expressed a union of members of , ok.

So, why is   a topology? The axiom (AU), (AU) is what; arbitrary union is easy, because

union of union; union over the families of union is again another union. To see (FI), the finite

intersection, suppose you verified it for two of them then again the intersection of unions will

be unions of intersections; therefore, it is enough to verify it for only two of them anyway.



I have written complete proof here: , ok? let them be members of  that

is by definition. What are 's? They are inside . Now, we will look at intersection, it is

, ok intersection taken over all  and . Now, suppose  is inside the intersection

 on the left  hand side,  then it  must  be  inside one of  these ok;  this  means  

contains  for some . 

So, there exists a  belong to , this is the part of the definition for  is a base, So,  belongs

to  contained in , it is a part of the definition for  to be a base. 

So, that is what I am using here. So, this implies that   is in  and  is inside , ok,

because this is the union of  's. Therefore,   is a union of members of  , every

point is inside some . So, it will be union of members of . So, therefore, it is an element of

.

Once this is a family is a topology,  which is the smallest one will be contained inside .

So, that is every member of   can be expressed as a union of members of  . Once it  is

contained inside , what is ? Every member of it is expressed as a union of members of 

ok? So, this proves (i) implies (ii).

Now, (ii) implies (iii). That is very straightforward because every member expressed as union

of members of   implies given any  belonging to , since  a union of members of  ,  

must be inside some member of . And anyway  is contained inside  already. So, this part

is very easy.

Once again (iii) implies (i) will be the hardest if at all. Even that is not difficult. So, let us go

through that.
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In addition to proving conditions (B1) and (B2), we must also prove that   is the smallest

topology containing . So, this is the meaning of  is a base for . First of all, I prove that

conditions (B1) and (B2) satisfied. Then we we prove the smallest topology containing  

must be equal to .

 So, do these two things. I have to show actually three things I have to show ok. 

Since, every element of  belongs to some member of , ok? (B1) holds. Since  belongs to

, given any  in , there must be a member  of  such that  in . This give (B1).

Secondly,  is contained inside  that is given right in (iii) that is given ok.  is contained

inside , therefore,  given  and  belonging to , their intersection will be a member of 

,  because  each  of  them is  a  member  of  .  Now you  take   and  apply  the

condition (iii) for  , you will get a   such that   belongs to   contained in

, ok? So, (B2) also holds. 

Finally, I have to show that   is equal to the given   here, ok?   is contained inside  .

Therefore,  is contained inside , because  is the smallest topology. I have to show that

 is contained inside , ok? Only that one remains to be proved now here, ok?
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So, we want to show that  be any topology on  such that   is contained inside , ok?

Then we want  to  show that  this   is  contained inside  .  That  will  show that   is  the

smallest topology containing , that is  and will be equal to  then, right? 

So, given any element   in  ,  for  each   inside  , we have some   in   such that  

belonging to  such that  is contained inside . This is given to us by (iii). Therefore, 

is the union of  ,   belongs to   right? Note that, each   belongs to  , but they are all

members of  as well. And  is a topology. Therefore, the union of all  must be in .

So, starting with  which in an element of , I have shown that it is in , that is all ok?  So,

 is the smallest topology containing ; that means  is equal to . 

So, equivalence of (i), (ii) and (iii) is established.
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So, that is what I am telling here again,  which I have told you already. If  is a metric

space and  is the collection of all open balls in , clearly, this  satisfies (B1) and we have

proved that it satisfies (B2) also in that theorem ok, in chapter 1. 

Therefore, it is a base for a topology and that topology is nothing but  . This much we

had seen anyway. In particular, the collection of all open intervals in  is a base for the usual

topology. I just want to recall all these things.  They were the basic things, they were the

motivating examples for us, ok?
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For the future purpose, only for future right? Now we do not need itright now. Pay attention

to this condition (B1). We can make that as a separate definition, namely, any collection  of

subsets of  satisfying the condition (B1) is called a cover for , ok? Union of members of

, if it is equal to the whole of , then we say  is a cover for , this we will use later on

ok?
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So, what we have seen above ok, we cannot expect any arbitrary cover  of  to generate a

topology, we need condition (B2) also right? This (B2) may not be satisfied by a given family

. However, there is one type of families which satisfy this property ok? It is stronger than

(B2) that is why I, I want to call your attention to this alright. We will take up that one next

time and that will lead to the concept of Subbases.

Thank you. So, we will meet next time.


