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Welcome to module 20 of Point Set Topology Part 1. So, today we will discuss one small

application of the Baire's category theorem. As I have told you all these three big theorems in

matric spaces have many many applications in analysis. For example, the Banach contraction

mapping principle is used in the existence and uniqueness of initial value problems, boundary

value problems and so on in differential equations.

So, instead of calling them theorems, people who like to call them as principles because they

are often the principle rather than just final result stated in the theorem ok? So, today we will

just give you a small application in elementary analysis. Since we cannot discuss the big

applications of this in function analysis, in this course.
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You start with a domain  inside , take a function any function real valued function. Take

subsets of  which are open intervals, non-empty open intervals. Those things I will denote

by  need not be any open subset of  will do, or even a close subsets of  like a closed

interval or whatever. The function has to have a domain after all. 

For each fixed non empty open interval   contained in  , let  us put  this  notation  

which is the difference of the supremum and the infimum of  taken over the entire of .

Do you take the supremum and infimum first and then take the difference, or you can just

look at   and take the supremum, these two quantities are the same, as  and 

freely range over  is fixed here.

But each  have this number ok, may be this could be infinity also, I do not mind ok?  is

also allowed alright. So, only thing is I am assumed that  is non empty so that the RHS is not

something like  etc. which may not make sense. So, this always makes sense. So,

this  quantity  is  called  the  oscillation  of   in  .  So,  you  can  say  that  this  measures  the

difference between  and  how large it could be. So, that is oscillation.
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Now,  for  each  fixed  ,  you  take  all  neighborhoods   of   which  are  interval.  So,  open

intervals around , ok? Put  equal to infimum of all this ; where  ranges and

now  is fixed, ok? So, these  are all subsets of the domain .

Student: This  should be , here?

 could be  yes.  If so you know, depends upon what you have taken for the domain of 

. Normally, it does not matter because you will have to take  smaller and smaller. So, it is

around  that is what is important. So,  is called the oscillation of  at . 
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For example, I will just give you a very simple minded example, look at a step function. So,

here I am taking the domain as  ok, it does not matter what  you take, does not matter,

but I want to include a step function. So, it should include some points around the point

where the breaking occurs, I believe that you all know step function. So, here is   is

equal to 1 in the interval  open, it is equal to 2 from closed interval .

So, at 1, when x equal to 1, there is a discontinuity here you can see, ok? Then take any sub

interval   around 1, ok? Look at all such sub intervals open subset you have to take which

contains , then  will be exactly 1 ok? Now, if you take the infimum it will be also 1,

ok. So,  will be 1; remember  is the infimum of our  ok. 
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Here  is  a  picture  what  happens,  this  is  a  step  function  at  ,  it  is  this  1  ok,  I  have

deliberately  changed  this  thing  here.  You could send  this  point  here  or  above,  does not

matter. The modulus of the difference ok? For any point here, the value the difference is

always 1. So, the infimum is also 1 ok.
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Now, you have definitions of continuous functions, usually you take the domain to be an

open set right. So, I have taken an open interval  here. You can also discuss the continuity in



a closed intervals also finally, but to begin with you take open intervals anyway. So, take an

open interval  ok, take a point  inside that, take a function it is continuous at that point if

and only if the oscillation at that point is 0 ok? So, this could have been right in the beginning

your definition of continuity because this statement is if and only if. 

But you have defined continuity in a different way, so let us just check the validity of this

statement. It is a very straightforward ok? Suppose  is 0 then we want to prove that 

is  continuous at   in  the   definition.  So, given  ,  we must  produce   such that

 must imply modulus of | .

If that is true for all  inside that interval, that the supremum will be also less than  which

is same thing as . So, I am using this part of the definition for the oscillation here

these two are equal is obvious to verify, only thing you have to know what is the meaning of

supremum and infimum, alright.
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So, now  is 0 first of all implies there exists an open interval   around  , such that

 must be less than . If the infimum is 0, this has to be less than  some , right. Also,

you can see that when you are taking the supremum on a smaller set of of values is smaller

than the supremum on larger set of values.  



So, omega of I 1 will be less than omega at I 2 f is common here, so there is a f here. Choose

delta positive, such that I delta is x minus delta x plus delta contained inside I. So, this I delta

is just in a short notation. Then omega of f, I delta either will be less than epsilon because I

have already made omega of f I is less than epsilon.
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So, if  is contained in , then  will be less than or equal to . Choose ,

such  that  ,  the  interval   is  contained  inside  .  So,  this   is  just  a  short

notation. Then  will be less than  because I have already made  is less than .

So, now for any  in , what is the meaning of ? That  is less than  ok? Look at all

the infimum of , such that  belongs to , that that will be less than  because I am

taking infimum here, and  is one of the points here. Similarly, that  will be less than the

supremum of all the  varying over . Because  occurs here as well as here ok? 

Therefore, when you take the difference  that will be less than  ok, which

is supremum of this minus infimum of that, alright. So, therefore, that will be less than  ok.

 is already chosen to be less than  because it is less than . So, this proves the

continuity. The other way around is even simpler. So, I will leave it to you as an exercise.



This is just to warm up so that you may refresh your memory of continuity,  continuity

definition and so on, that is all. 
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So, what I am interested in is, take  from  to  , any function and  be the set of all

points  at  which   is  discontinuous.  So,   for  discontinuous,  the  set   of  points  of

discontinuity  of   is  an   set  ok?  So,  this  is  the  proposition  ok?  So,  here there  is  no

continuity remember,  may be continuous at some points, may not be continuous at all the

points, whatever. Earlier, you have applied this  and  for continuous functions. 
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Now, I am taking set of discontinuities, that is . So, how to prove this? These are standard

methods in real analysis. It is the method that should be paid attention to. You know, they are

educative that is why you have to pay them attention. Look at , set of all points  such

that . Why I am looking at this? I am looking at the points where in  is

not 0;  is always non negative. If it is 0, those points correspond to continuities of .

So, I am looking at points where it is positive. If it is positive it must be bigger than or equal

to  for some . So, that is why look at this set, ok? Then if you take   which is all

points where in it is positive will be the union of  ’s right? Because every point must be

bigger than  for some n.

So,  will be union of ’s. We need to show that each  is closed. Then this will be .

Over, ok? So, here is something. I am not claiming that  is a continuous or anything

like that, ok? But points wherein it is greater than equal to  is a closed set is what I am

claiming. If it were a continuous function this would have been obvious. 

So, let   not in   ok? I should show that  there is an open subset  around   some   or

whatever, such that the whole open set is not in  ; that means, I am trying to prove that

complement of  is open ok.



Suppose  is not in , then  by definition is less than  ok. What is ? It is

the infimum of all  , where  is some interval around . So, that this is less than 

means that there is an open interval  say, such that  is inside  and that oscillation of  on

 is less than , ok? On other intervals it may be bigger, but at least one of them must be

there, otherwise infimum will be bigger than equal to .

So, but then for all  in  what happens?  is an open interval remember.  will also

less than , because now I have to take infimum over all these open intervals containing .

So, for every fixed  in ,  is less than . So,  will be less than , ok.

So the whole interval  is contained in the complement of . Thus for each point you have

got an interval. So, the complement of  is open alright?
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So, coming to the proof of one of the finest theorems. What we are going to do? Combining

this  proposition about  this  set  being  ,  ok? Along with what?  Along with our  example

1.127. Let us have a look at it. This example said that the set of irrational numbers is not . 
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So, let us go here that is the example here ok. The set of irrational numbers is not  right?

Indeed, if a closed set is contained in the set of irrational numbers then it is nowhere dense.

So, that is that is the discussion here. In fact, what we have done is even if it is contained in

the set of rational numbers, it is  . Because either rational numbers or irrational numbers

they do not contain any interval. But closed subset you have to take alright.
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So, the conclusion here is there is no function from  to  which is continuous at all rational

numbers and discontinuous at all irrational numbers. Why?  for such a thing would be

exactly equal to , then this proposition says that;  is  there is no problem about

that.

But  means what? All these ’s are closed subsets of  therefore, it is nowhere dense.

Therefore, I have written the irrational numbers as a countable union of nowhere dense sets;

that is not possible ok? So, there is no such function.

So, this is  not  at all  that  important  result,  but  why I have included it  here is just  for an

illustration of the power of Baire's Category Theorem. from very many things to very strong

things it can control. 
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Just to complete the picture, I want to remind you that if you interchange the role of rational

and irrational here there are such functions, there are continuous functions such that at all ra-

tional points they are discontinuous and at all irrational points they are continuous.

So, so the  can be the set of rational numbers or any subset of it also, no problem. At say

few points which are rational and few others irrational numbers also that is also allowed. It is



just the irrational numbers as set of discontinuities that is not allowed. That is the conclusion

of this theorem ok. So, here is that function which has many many names. 

So, the idea goes back to Dirichlet. Dirichlet's function is slightly different, put  here instead

of  here. Thomae has slightly modified it and it becomes quite an interesting example. So,

 if   is irrational and  if   with  ok. So, just to remind you

what will be  according to this definition? 

See  0 is a rational number and how do you write it as  where  and  are coprime. The

only way  can be equal to 1 when , is to take . Therefore, the value of this

function at  is . I am just explaining this definition that is all. Suppose we take ,

then you should write it as  and then then . 

Suppose you have , then you will have to write it as  then  and so

on. So, continuity of this function uses an interesting property of all  rational  numbers or

more so of irrational numbers, that I will not discuss. This is very standard ok? So, let us stop

here next time we will do one more serious result and that will be the end of this chapter ok.

So, tomorrow we will do one more serious result about metric spaces, namely, completion of

metric spaces. Any questions?

Student: Let us.

Ok, Tell me.

Student:  So,  this  theorem about  the  set  of  discontinuitues  is  being   set,  is  there  any

analogous result for Metric spaces? Can it be extended?

Complete metric spaces yes, see complete metric spaces you can formally say you know what

we need to show first of all, you can try to see that this , you should be able to

show that it is closed that is it. So, where how far you have used here, what is the meaning of

the oscillation etc, you will have to be very careful you have to define properly ok?



So, what is it that you have to take neighborhoods instead of I you can you can just restrict

yourself to just open balls around that point, no problem. Look at all   ranging in the

open ball ok, . But the function has to be real valued ok, and not arbitrary then

there is no infimum and supremum. So, domain can be arbitrary metric space, but you have to

put completeness ok? Then at least it makes sense you have to check it it is a good exercise

try it. Good question.

So, try it and see how far all these things go ok, countable union automatically comes just

like this one. So, if you can show that these are closed subsets which is not difficult anyway.

Complement is open, similar proof is ok. Now, the problem here is why these  ’s ok are

nowhere dense. So, you do not have irrational numbers and so on there in an arbitrary metric

space ok. So, what is the conclusion? The set  is . Up till there you are fine ok

So, in the absence of any fixed nohwere dense subsets, final conclusion will be missing.  

So,  I  what  I  mean  to  say  there  is  no  concept  of  the  set  of  irrational  numbers  or

complementary irrational numbers and so on,  in  an arbitrary metric space. So, you have to

replace the corresponding by correct hypothesis that is all ok.  Alright, let us stop here.


