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Welcome to the 2nd module of Point Set Topology course part I. This is an  NOC course of

NPTEL. So today's topic is Normed Linear Spaces. Recall that we use this notation   for

either the set of real numbers or the set of complex numbers. Amongst all properties of the

modulus function on - (you know we talk about modulus of  which is equal to what? Take

 and then taking the square root, ok?)

So, there are modulus functions on both   and  . So, I am trying to handle both of them

together. So, what is the striking properties of this modulus function? I would like to list three

of them. The first thing is that modulus is always a non negative real number. Whether  is a

real number or the complex number,  is a non negative real number.

It is  if and only if  is . So that is the first property. Second property is that  if you multiply

by some number,   times  , then the modulus of that is modulus of   into modulus of  . I

deliberately write  and  instead of  and  because in the multiplication, this  is supposed

to be scalar multiplication. It is not a real number, it is real or complex, no problem.



But just to indicate that they have different roles here, ok. So, that is why I am writing  here,

that is all.  Even if you write  is correct, there is no problem. But do not take  as

a real  number,  it  represents real  and complex number as the case may be.  And the third

property is that , ok?

So, these things we have been using all the time, that is why they are the most important

ones. So, these properties will  now taken and made into an axiom, ok? So that is what we are

going to do now, ok?
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So, I have already told you that what I am going to do. If  is not real but  is  and  can

be  taken  as  .  Namely  every  complex  number  can  be  written  as  real  part  comma

imaginary part .

Then   is  nothing  but  square  root  of  ,  ok?  So,  this  looks  like  I  have  the  same

modulus function the same properties, wherein  could be  or . But now you can do it for

all . So, that is our idea, it is  easily generalized to all , right?
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How? If you just take a vector, now an   vector  , all   are

real numbers. Just like when   was  , this was real part and imaginary part of a complex

number.

So, in more general case you have  coordinate real numbers here. The coordinates of , they

are all real. Then I denote it, for the sake of future reference also, this 

        

the  indicates that I am going to take squares here and then square root here, ok? Take the

squares of each , sum it up and then take the square root. This is what is called as Euclidean

norm, ok?

So, we have just generalized the complex number modulus for all , you know you can call

it as a modulus. So, just not to get confused,  instead of calling it a modulus,  I am having a

different notation here that is all. So, the same properties can be checked for this `norm ' now.

The   is non a negative real number. It is  if and only if . Now,  means what?

Each  are all .

Similarly,  now  comes  the  difference,  I  cannot  take   as   and   as

. No,  will be taken as  and  will be now taken only from 



either a complex number or it is just a real number. Now, I want to take it a real number

because all , we have taken are real number. 

So,  this  is  the  second  property.  Third  property  is  again   is  the  same  thing

.  Here  it  will  be  .  The

norm of that, instead of modulus, is less than or equal to . So, these are properties

which will be, these three properties which will be, carried over to this norm function also.

This is number three, ok.

So, many of you have seen this one, I am just listing it:   is non negative and is  if and

only if all the coordinates are zero. Norm of  is modulus of  times norm . Here  is a  real

number  and   is  in  .  Norm  of  ,  namely  this  two-norm,  is  less  than  equal  to

, ok?

So,  this  was alright  and  an easy  step.  But  what  we want  to  take as the  the first  step is

something more you know,  and  substantial,  that is our first  step of generalization. What is

this, it is called normed linear space, that is what we are going to define now.
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So,  instead of taking , what you want to take is any vector space over . So, I can take

 also, ok. So, in that case this   will become a complex number. Then also this

make sense, that is what we want to know.



So, take any vector space over , ok?  is a field ok, whether  is  or , it is a field. We

have to take a vector space over  , need not even be a finite dimensional one, it could be

infinite dimensional also, ok? Take any vector space  . So, by a norm function on   we

mean a function,   this notation is not functional notation, but this is the way we would

like to write it namely, this is the slot for the function ok?

So, norm is a function from this vector space  into what?-- non negative real numbers the

closed interval , ok? The entire ray here, so that is the codomain. So, a function which

satisfies  these  three  hypothesis    for  norm,  ok?  What  are  they?  They are

exactly the same thing as what we have seen here, same thing as what we have seen for the

modulus function here, ok?

The very easy thing that we have done the same property we write here only, we have to take

care here namely that   is a vector.   is always inside  , but wherever   appears,  I have

written deliberately you know , where   is a scalar, i.e.,   is in the field   whether   is

either  or , ok?

The first property is, positive definiteness is the name :   if and only if  . The

positive part corresponds to that it is taking non negative numbers here and it is  if and only

if  is definiteness, ok. This is our  standard terminology here. The `homothesy' says that

take scalar multiplication and then take the norm that is the same thing as multiplying by the

modulus of the scalar into the norm of  , ok? This happens for every scalar    and every

vector .

The third one is again a copy of the corresponding third property there. This has a name

triangle inequality, which is derived from the two dimensional  school geometry you know. If

you  take a triangle, then sum of the two sides, you know, is always slightly bigger than or

equal to the third side. So, that is what this triangle inequality means here.

Norm of  is less than equal to . These  and  are now arbitrary vectors inside

this vector space. When you have such a function, it is called a norm. Together with such a

function the vector space   will be called a normed linear space, ok? This is the standard

terminology now, nobody else speaks about  anything else.  Earlier  in the development  of

these things there were different names ok?
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Let us have some examples here, of what are called as  norms. See now why I denoted this

 with a  before with a suffix , that will be clear here. Instead of this , I would like to

write any positive real number, ok. I would like to, but I cannot. I will have to restrict myself

namely for .

So, of course, it is , then what is the meaning of this? This is summation of , we have to

take. Do not take    as they are,  with squares,  it  was was ok. Real numbers square are

already  non negative, so you do not have to take modulus. But the correct thing is to take

always modulus, then it will work for complex numbers also ok.

So, this thing which is very simple as to be correctly generalized and correctly modified. So

instead of  , I can write   here then  . Then instead of square root what should I do? I

should take the  root. Raised to the  first and then take the  root of that. That is what I

am doing here.  Come here,  ,  take the summation,  and take the   root  of  the total

summation.

So, that will define again a norm is the claim here. So, what you have to verify? You have to

verify that if I put this whole thing to   then all   must be  . That is an easy thing, some

power raised to  is , means the summation itself is . If the summation is all non negative

number, so each  must be . Therefore, each  must be .



So, the first part is totally obvious right? Second thing is if I multiply this one by a scalar ,

all the  will be multiply by scalar  .   First of all, modulus of   raised to  is   into

. Then  will come out here, when you take  root of that it will be just , right.
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So, that is the second one. So, the first two   and   are straight forward, right. Some

computation, little more analysis, is needed to prove the third one namely triangle inequality.

Triangle inequality now for , what it becomes? Take , summation and then take the

 root. It should be less than or equal to individually, you do the same thing for both  and

, namely  summation then raised to  plus  summation and then , right?

So, this is what you have to verify. This has a name. This is called Minkowski's inequality,

ok? It is not very straightforward, but it is not very difficult also, there are theories here. So,

these things are very nicely done in elementary real analysis books. So, what I want you to do

is, if you have not seen it, you please read it from some book. I am assuming that you know

already a bit of real analysis. Real analysis courses will discuss these kind of things ok?
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There are many books. If you do not know you can  approach me, then I will give you  exact

reference to some books. No problem. So, we shall leave it to you to read the proof of this

Minkowski inequality from any elementary analysis book, ok? Of particular interest for us is

the cases where  and . When you put , what is it? You have to take  raised

to .

So, there is  you do not have to write it,  take the summation and then take the  root and

 root is the same thing. So, it is just summation  of . The second one, which we already

started  with,  what  is  called  as  Euclidean norm.  Started  with the  observation  that  how it

happens, what it happens in  namely in the plane, ok. 

Summation   ok? (If   real numbers, we do not need to put modulus, but for complex

numbers also it is valid; you can take  then you have to take  and then

take the square root.)

So, that is Euclidean norm ok. The first one is called the  norm. If  etc. or , then .

That is  what we have: the  spaces and  norms. This   norm has a different name, it is

called taxicab norm also. This was actually introduced by Jordan ok? 

Before Jordan, people were usually talking of this one single norm namely l2 norm. The l1 is

a contribution from Jordan, ok? Very simple minded thing it is. Now of course, we have

many other norms which we  will have to study.
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So, these examples generalize immediately and effortlessly to the case when  is an infinite

direct  sum of copies  of  .  You know direct  sum of copies of   means what?  It  is  say

 finitely many  and then  to where you want to stop nobody tells you.

If it is only  then you have to stop it  and  tuples, right. If that is the infinite

direct  sum,  it  could  be  countable  or  uncountable  also.  Then  you  cannot  write  it  is  say

. We can write  where  ranges over  an indexing set  so on.

So, but for each vector only finitely many entries will be nonzero. So, you can add, you can

take the modulus of them, you can take the raised to , then you can add the indices, all these

things make sense, immediately and everything works because each time you have to restrict

to only finitely many coordinates. So, if you have proved Minkowski inequality, ok other

things are just easy or right now you think of that you have proved it then you can apply it ok.

Now, there is yet another interesting case namely it is not direct sum of anything. This  is

infinite sequences of real or complex number such that you can take this sum. You see if it is

finite sum there is no problem, if it is infinite sum what you have to do? 

You have to say its convergent ok, now it becomes very crucial that I assume  is between

one and infinity. Otherwise, Minkowski inequality will not be true ok. Other things are ok,

but Minkowski inequality will not be true.



So,  belong to  we have taken, then look at all this.  that is a notation now  upper .

Remember  was for the norm,  was the space here. All sequences are inside it ok, infinite

sequence  with  all   inside   ok,  summation modulus  is  absolute convergent,   sum of

modulus raised to  power, that must be finite.

Take two of them the sum will be also finite, by  Minkowski inequality. it means that you

have proved that this   is a vector space,  times a vector in this is finite is obvious, ok.

So, it is a vector space. In proving  that this is vector space itself you had to use Minkowski

inequality ok. So, all that you have to do is you replace this  here by , to justify this what

you have to do? You have to show that these are convergent and so on ok. Once you have

made convergent, you have made it as a hypothesis here you have proved this hypothesis.

So finally, what you have to is why this one is true for when you have infinite sum. You take

just the limit. It is true for each  ok, it is true for partial sums so, you can take the limit. Then

for the limit also it will be true ok. You do not have to prove Minkowski inequality separately

for the convergent sums, that will automatically follow, alright.

So, we have all these  spaces what are they? They are convergent sequence, convergence is

with respect to this ,   summation. So, those things must be convergence, ok.
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There  is  one  more  interesting  thing.   Do not  worry  about  convergence,  but  put  another

condition,  just  weaker  condition  namely  all  those sequence  which  are  bounded by  some



number. See when you have infinite sequence you do not know it may be  you

can keep going you do not know whether they are bounded. You want them bounded ok. 

Take real or complex number, no problem, take only bounded sequences. Then you can talk

about the supremum. Remember supremum is not  the same thing as maximum because we

are taking infinite sets here ok. Supremum will be also some finite number because it is a

bounded sequence. You put that supremum as this .  It is just a symbol. Here I am not

taking  first and then taking the limit ok.

In some sense that is also true if you understand the geometry, but this is just a symbol here

for supremum ok. Now, verifying 1 and  is easy as before. Verifying  is also easier

here, you think about it. If we have not done it, these are not difficult. 

For the supermum you do not need a lot of analysis, some  elementary inequalities will do.

So, that will give you Minkowski inequality, something corresponding Minkowski inequality,

which I have called a triangle inequality in this case ok. For , so  will be also easy

here. So, this is called  or sometimes  norm, ok.
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So, if you take a vector subspace of vector space which has a norm, then everything works

for this vector subspace also. If you just restrict the function - norm function to the subspace.

That way there will be another normed linear space ok.



So, for example, you can take this   itself, sitting inside all this   spaces. How?   is

what?  is just  then put . So, a finite sequence can be made into infinite

sequence, you know, by extending, by putting extra  ok. So, then take the maximum norms,

supremum norm, various norms. All old things are there already,  restricted  norms will be

 norms on .

But now I get one extra thing which I had not done, namely, the supremum norm becomes

maximum - the maximum of  ok. So, that is called , the same symbol

because it obtainable by restriction.  But now it has a different name on the right hand side

because  this  is  maximum, supremum becomes maximum ok, only when these  things are

finite dimensional vector spaces.
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So, here is a remark about these  spaces. Which just for getting because these are examples

that I am giving you I am telling, but you should be learning these things in analysis. But let

me just explain this point because I may sometimes use this one. Namely if , then  is

contained inside .

What is the meaning of that? If a sequence, if a series   is  convergent after raising

power  in absolute convergence raised to power , then it will be convergent if you take 

also.



Why this is? This is just a comparison test. See a sequence which is convergent like this in

which  I am taking modulus here, you can always assume they are real number positive real

numbers ok. So, it is absolutely convergent to a positive real number. So, for any positive real

numbers summation convergence means after certain stage, ok, these things must be small. In

fact, limit of  as  tends to  must be .

So,  they  are  smaller  than 1 therefore,  when you take a  higher  power  it  will  be  smaller.

Therefore, each  raised to  after certain stage will be smaller than  raised to . Therefore

if this is convergent this will be also convergent. So, that is the comparison test here ok.

So, this is all elementary analysis. So, I have given you full explanation here, ok. Why if you

take a sequence like this, this one will also be convergent. Convergence of such a thing 

for example, ok. You have to use why this convergent if and only if  . You take the

sequence  , where   is  between   and  . This sequence will be inside  , but not

inside .

So, that will give you that  is contained inside , but there are points in  which are not in

.  So,  containment is  strict  here  ok.  One single example wherein   you have to  choose

correctly, ok, so . This is a beautiful example, this series itself is very important one ok?
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So,  containment  is  fine.  But  there  are  some  other  kind  of  relations  also  close  relations

between  norms. So now, I am coming to the geometric aspect of this one. Look at just the



numbers   and then . Do not worry about the in between real numbers there, only

take the integers ok. 

Just to concentrate on what is going on. Not for the sake of  logical statement, just for getting

some ideas ok. You can take one and half and so on that may be more difficult to imagine

what is happening ok.
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So, just take these numbers and look at this picture. This is in 2, ok. because I am drawing a

picture means it has to be in the plane right? So, plane is 2. 3, 4 etc difficult to imagine

ok.  So,  what  is  this  picture?  This  square  here,  this  is  set  of  all  points   such  that

.

This is x plus y less than or equal to 1. You can say this is origin , this is  axis this is  axis

right? What is this one? This is the circle. And, what is this last thing? This is the maximum

of  and  is less than or equal to . All these things are unit discs inside corresponding 

spaces. This is  , this is  (the standard Euclidean). This is   or   or  , I do not know I

have only drawn one of them then this last one is .

So, you see now if you keep on taking bigger and bigger p, this line becomes flatter and

flatter like these keeps going. So, in the limiting case it will become the outer square. So, in

that sense  is actually the limiting case of these things. That is what I meant earlier ok.
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So, these are , for you know ,  for the  norm or  such that norm of  is less

than or equal to . So, various discs I have shown ok. So, when  is smaller the corresponding

disc is also smaller. This is , this is smallest one is containing all of them. As  increases the

size of the disc increases you know bigger and bigger and finally, it will become the square

like this. So, that is the picture in , similar pictures you can see in all  ok?

So, that I cannot draw. But I can make this conclusion - If , the  is always less than

or equal to (same x, x is same ok) the . The  norm, you know  norm is less than 

norm. So, this easy to verify ok. Argument is similar to what we have done, this kind of

argument we have to use.

So, this is the roughly for today. There is little more deeper relations between this  spaces.

So, that we will investigate a little later ok.

Thank you.


