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Welcome to module 19 of Point Set Topology, part I. Last time, we had announced that we

will do three important theorems in metric space theory. The two of them we have already

done last time. The third one is Baire's Category Theorem. Before we even state this theorem,

it is convenient to make a few definitions. Of course, one can make the statement without

these definitions and so on that is not a logical necessity.

The definitions only help in reducing the number of words we use ultimately. So, let  be a

topological  space  and   be  a  subset.  So,  these  notions  I  am use  introducing  inside  any

topological space, not necessarily metric space; remember that.  is called an  set in , if

it is the union of countably many closed subsets of  . This definition is cooked up just to

take care of these kind of sets because they are not closed you know, in general, an infinite

union of closed sets may not be closed.



But, however, in this theory what happens is countable union of closed sets becomes very

important, but you cannot call them closed sets. So, we have to put a name for them usually

 is used for closed sets at least in German (or is it French?) topology in those days,  was

used for closed set. So, the sigma is for countability, you know like countable sum. So,  

stands for countable union of closed subsets. Any set which can be written as  countable

union of closed subsets will be called .

Similar to this one and dual to that  is called a  set, if it is the intersection of countably

many open sets. So, that is like De Morgan law, ok? So, the explanation for the name  is

same thing  was used for an open subset and  for intersection; so,  is for countably many

open subsets and then take the intersection.
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Let us continue this definitions - if   is a countable union of nowhere dense subsets. Now,

that is a stronger word here not just closed subsets, nowhere dense subsets, then,  is called a

1st category set or belonging to the 1st category or just say 1st category. A set is said to be

1st category, if it is a countable union of nowhere dense subsets of .



So, everything is happening in the ambient space  , ok? If we change  , the nature may

change. Such a set is also called a meagre set. If  is not of 1st-category, then it is called 2nd

category. Just to make distinction between these two things that is all, ok? Such a set is also

called non-meager because it is not meagre, that is all. Now, there is one more terminology

here that people are using. If a topological space itself is of 2nd category, you call it a Baire

space ok? After the mathematician Baire ok, who introduced these ideas. 
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Now,  let  us  state  Baire's  category  theorem.  It  becomes  very  simple  because  of  this

terminology. Every complete metric space is of 2nd category. What is the meaning of this? It

is not 1st category. What is the meaning of that? It is not the countable union of nowhere

dense subsets of . The only condition is that  is a complete metric space now ok?

So, statement becomes very easy that is the whole idea. Now, I have put this as BCT - Baire

Category Theorem 1, because there are several versions of this one, ok? So, I have picked up

one of them, simplest, very simplest in terms of these definitions. So, this is: every complete

metric space is 2nd category.
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Before going into the proof, let us examine a couple of examples. Of course, every open set is

. There are many  sets which are not open. In some sense, they are the next best things

to open sets. See, in topology we always keep studying open sets right, but in a metric space

 sets also become important, ok? 
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In a metric space especially every singleton set is a   set for you can write singleton  as

intersection of balls of radius  with centre  as  varies over all positive integers, right. In

particular, every singleton set in  is also a , that is precisely what we have done. In every

metric space this is true alright. Similarly, every closed interval is also a  set because you

can write it as say,  is the closed interval; you can take  and then take

the intersection ok.

So, many interesting results on continuous real valued functions follow from this observation

namely, let   be any topological space and  from  to  be a continuous function. Then,

for every , the set of  consisting of all points  belonging to  such that  is equal

to . This is a  set why? Because singleton  is a  set. 

You can take the inverse image of all those countably many open sets right. They will be

open, when you take the intersection it will be the intersection singleton . Do you understand

what is going on here? Since  can be written as intersection of  right?

You take the in inverse image of that, they are say , intersection of that will be precisely

. 

So, take any continuous function into , ok? So, inverse image of open set is open inverse

image of  is . That is all what I am trying to say it here, more generally, alright. 
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So, there are some other more interesting examples. Any countable set in a metric space is 

. You know by taking complements, because each singleton a closed set this is a countable

union. Each interval in  is both  as well as . So, just like , similarly we can take 

also. 

But now comes an interesting one. The set of irrational numbers is not  , ok? So, I have

given you examples, but there are not everything is  or . The set of irrational numbers is

not  inside . For suppose, it is like this namely  is the irrational numbers; suppose

you write it as union of countable union of closed sets, ok.

So, that is the meaning of this is  , right? Then being subsets of irrational numbers, we

know that each  will be nowhere dense ok, as observed in example 1.89. Let me just show

you this example which you have done earlier, the fourth one here,  is a closed subset of ,

and is contained in either  or . Then, it is nowhere dense right? 
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We have seen this one. For   is a closed subset, then  , interior of this one is same

thing as interior of  , So that means that   contains no intervals. Any subset of irrationals

contains no intervals. So, this is what we had seen earlier. So, I am just recalling it. This is an

important example here ok? So, if you write   as union of  's, first of all each   is

closed is the assumption, then each  becomes nowhere dense.

But then you can put more you know another countable family of sets namely all singletons

ok, singletons are anyway nowhere dense right? They also do not contain any intervals, these

singleton are coming from , But now whole of   is a countable union of closed sets and

nowhere dense sets. So, that shows that this  is written as union of nowhere dense sets. It

means  is 1st category in our definition right, but  is a complete metric space.

So, Baire's theorem just says that, every complete metric space is 2nd category. So, I have

given you an application you know very simple mind application of Baire's theorem to show

that that the set of irrational numbers cannot be written as a countable union of closed sets. Of

course, with rational numbers are  no contradiction, there is no harm ok?
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I will give you one more example these are the easy consequences of of Baire's theorem, but

that is not the end of Baire's theorem we will see. So, let us take another example here take a

polynomial in n variables. Of course, if you take zero polynomial that is not interesting. So,

non constant polynomials, let us take one ok? 

Look at all  the zeros of that, the zero set   of polynomial  ;  all  ,

when you evaluate  on that:  ; that is a closed set because   is continuous alright.

We claim that   contains  no non empty open set,  it  is  nowhere dense ok. So, this is

elementary calculus. As soon as there is an open set of  (or  does not matter,) contained

inside a set, you can study the polynomial on that set ok? Which is identically 0 by definition,

that is it is contained in .

But a zero function on an open set has all its partial derivatives 0. If you compute partial

derivatives cleverly you can compute all the coefficients of this polynomial; not only in one

variable in any variable, any number of variables. You have to do all the partial derivative

various partial derivatives, That means what? 

All the coefficients are 0; that means,  itself is a zero polynomial, but we started with a non-

constant polynomial, ok. So, the zero set of any polynomial is nowhere dense. What is the



consequence?  The entire   or   cannot  be the  union  of  countably  many zero  sets  of

polynomials ok. So, that is the consequence by Baire's theorem.
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The zero set of any nonzero polynomial is nowhere dense. It follows that ,  could be  or

 does not matter, cannot be written as a union of countable many zero sets of non-zero

polynomials ok?
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So, let us prove this theorem now. We shall actually prove a stronger version of this theorem.

The stronger version I have called BCT0 because it sits over all other versions ok? Take a

metric  space  which is  complete.  Take a countable family of  nowhere dense subsets.  The

complement is actually dense that is a statement.   is dense. In particular it is non-

empty. An empty set cannot be dense because closure of an empty set is empty ok? That it is

non-empty same thing as BCT1. That we have seen because if it were empty then  would

have been union of 's that would mean that X is 1st category right?

But the statement is X is 2nd category. So, BCT0 implies BCT1 very easily. So, we are going

to prove the stronger statement alright. Once again, we have done the groundwork already. 
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So, this is theorem 1.107.  Let us take a look at this one ok?  is a metric space. A subset

 of  is nowhere dense if and only if, each non empty open set in  contains the closure of

an open disc disjoint from A. So, there will be some , closure of that intersection with

 will be empty ok? And this will be contained inside any given non-empty open set. So, this

theorem I am going to use again and again ok. So, I have to go back now. Yeah, we have had

this statement here, but I wanted to show that what actually we have done, we might have

forgotten it. 

If A is a nowhere dense subset of X, then every open set in X contains the closure of an open

ball disjoint from A. So, this is a statement I am going to use again and again ok? 
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So, this is precisely the kind of thing that we are going to be. This is dot, dot, dot, dot, dot is

the nowhere dense set. This single line, thin line indicates an open set. Inside that, I can find a

ball of some positive radius such that the closure is disjoint from all these points dot, dot, dots

ok? A nowhere dense set compared with an open set.
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Let  be any open ball of positive radius you start with. Instead of any open set, if I prove

this one for   which is an open ball then it will follow for every open set, I will produce



something inside . So, starting with an open set, I can start with  instead right? That is

why that , you know, an open ball of radius . 

We need to show that  is not contained in the union of 's. That is enough, ok? This  is

not contained inside union of  that is all I want to show. First of all   contains an open

ball  such that the , because  is nowhere dense.

So, this is the first time I am applying this theorem 1.107, ok. Now, I have got . Let  be

an open ball inside  of radius less than , ok? I am making sure that the radii are going

down, down, down to 0 by putting  here ok.  is contained inside ; This  is a ball,

but I want a ball of radius smaller than  whatever ok? It contains again, now apply

the theorem again, it contains an open ball , such that .

Now, you know the game. Inductively, suppose you have chosen  of radius less than 

such that  is contained  and . Once you have that, inside the , you will

get another one and so on. So, you keep taking them. 

Now, we apply Cantor's intersection theorem. To what? To these 's,  . So, these

are all closed subsets, their diameters are less than  , right?  So, as   tends to infinity,

they to go to 0.

So, therefore, this intersection is actually a single point. It is non empty is all that I require.

ok? Since, I want to apply Cantor's theorem I have put   so on. So, this

will go to 0. Therefore, C the intersection is a singleton. But I want only non-empty that is ok.

They are all contained in , ok. So, this singleton is inside , but what is this point? This

point is in  and  is empty for all n, ok? 

Why?   it is contained in . So,  for all  right. So, this point

is in none of the 's.  So, this means  is not contained in the union of 's. 



See if you wanted to prove that something is dense, what you have to do? Take any non

empty open set, it should intersect that set.  Here, we wanted to show that  is dense.

So the open set should not be contained inside the . So, that is what I have proved.

Take any open set  ,  ok,  it  is not  contained inside union means what? The compliment

intersects . Therefore, what we have proved is that the compliment of  is is dense.  Be

sure that we have non-emptyness is not just what we have proved. We have actually proved

that  is actually dense. So, that is the proof of this ok?
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So, let me make a few remarks here. This theorem is very useful in function theory when one

has to prove the existence of various types of functions. So, this theorem says something is

non-empty; that is how it is used ok? Some how you get a complete metric space, you cook

up a complete metric space then you cook up a sequence of closed subsets which are nowhere

dense in it. They will not cover the whole space means there is something left out. 

So, that is an existence theorem. So, that is the way it is used in many existence theorems ok?

Indeed proofs of several fundamental results in functional analysis use this theorem. I will

quote some of them which are very very fundamental namely, closed graph theorem, open

mapping theorem and boundedness principle and so on and so forth.



So, all these things come in elementary functional analysis itself. The first course in function

analysis seems you will  have all  these  theorems ok. They are  all  using Baire’s  category

theorem to prove, alright.

So,  all  these  things  come  in  elementary  functional  analysis  itself.  In  the  first  course  in

function analysis you will have all these theorems ok. They are all using Baire's category

theorem in the proof alright.  
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So, I will repeat this one. The above theorem has a negative tone; that means, 2nd category

itself, definition is it is not 1st category. The 1st category is what it cannot be something. So,

there are too many negations there.

But it can be put in slightly a positive tone as follows. So, I have given you those tones. And

then often it is how this positive versions are here. So, let us have those versions; Later on, in

part 2 we shall prove a version of this Baire's category theorem for locally compact Hausdorff

spaces which are nothing to do with metrizability, there is no metrics ok.

So, here are those versions. 
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Let   be a complete metric space that is that is standard assumption there is no other. So,

BCT2 says that suppose  is  written as a countable union 's, then at least one of 

's has its closure with non empty interior. See the hypothesis on 's is deleted, space is just a

countable union.

But, then you conclude closure of one of them has empty interior,   is nowhere dense for

some n, ok. So, it is just the other way around you. So, here there is no negation here. If you

write like this closure of one of them is empty interior. It is a positive tone. 

Another one is: intersection of a countable family of open dense sets is non-empty. So, this is

the way it will be used. So, there is one element they want. So, that is that is the existence

theorem. So, the proof of that 1 implies, 2 implies, 3 implies 1 they is they are equivalent ok?

is very easy for you. But 0 is a stronger statement which will imply all of them ok.
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So, here is  an exercise,  namely,  write down versions of BCT0 also similar to BCT2 and

BCT3 ok. Taken a complete metric space, does BCT1 imply that union of countably many

nowhere dense subsets of X is nowhere dense? Pay attention to the statement there it does not

say this, union of countably many nowhere dense sets does not fill up the whole space; this is

the weaker version.

Complement is actually dense is the stronger version, but here it is said that the union itself is

nowhere-dense ok. So, you have to see whether this is true ok? It is not stated does not mean

that it is not implied. So, I am asking whether this is implied by the statement. Think about

them. So, that is that is the exercise you have to think about it that is all. So, let us stop here.

Thank you.


