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Welcome to module 18, I have boldly named it as The Metric Trinity. What we are going to

do today is to discuss three most important theorems, according to me, in metric space theory.

So,  one  of  them  is  Cantor's  Intersection  Theorem,  second  one  is  Banach's  Contraction

Mapping Principle,  the third one is  Baire's  Category Theorem.  You can call  all  of  them

principles,  from theorems to they have become principles anyway.
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The  high  status  of  a  theorem  is  to  become  principle.  The  CIT;  CIT  I  mean  Cantor's

Intersection  Theorem.  This  is  so  fundamental  that  even  in  the  proof  of  Baire's  category

theorem we will be using it. Banach's contraction mapping theorem is slightly of a different a

flavour. It does not use CIT directly, ok? 

The method of the proofs of all these three are themselves quite educative. So, often you may

have to employ that in your own research work if you want to do, you know, deep analysis or

topology. So, I would like you to pay attention to not only the statement here but how things

have been arrived at. The proofs also should be learned properly. 
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So, let us begin with freezing this symbol  or just  for a metric space once for all in

this section. The first theorem Cantor's Intersection Theorem. So, start with a complete metric

space . Take a nested sequence of non empty closed subsets of . Nested means what? one

contained in  the  other  but  the  other  way around.   contains   and  so  on,  they are

decreasing here, ok? Nested could be the other way around also. 

So, here they are decreasing, but condition comes automatically after the second condition

here.  So,   denotes the diameter  of each  of  them. So,  this  sequence  of  real  number

converges to 0. So, this is also a condition. So, each  is closed which contains  and the

diameter tends to 0. Then the statement is that intersection of all these 's consists precisely

of one element, ok?

This is stronger than saying that it is non empty. This has exactly one element. The proof is

surprisingly very simple, ok? You will see that. 
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All that I do is 's are non empty, so, pick up  belong to  for each . Then look at this

sequence  is less than  because both of the elements are inside . This  is

what?  is the diameter, it is the supremum of all such numbers , where  and  range

over . Therefore, the distance between  and  becomes less than , but  

itself tends to 0. Therefore, it can be made less than epsilon etc. 

So, this implies that  is a Cauchy sequence, but now I use that  is complete therefore,

 is convergent. So, let us take  to be the limit, ok? Now, we also know that if you have a

sequence , you see the entire sequence  is not in any one of the sets, but suppose you

choose some , here then  onwards that sequence is in . The limit of that portion of the

sequence is also , right?

The first  terms does not matter here. Therefore, each of these sequence can be thought

of as a sequence inside , ok and the limit therefore, must be inside the closed sets . So 

is in the intersection. It follows that this limit point is inside all the 's. So, here we are used

that  's are closed and they are monotonically you know decreasing one contained in the

other that is also you have to use. That just means that intersection is non empty. 

The second part: that it must be a singleton; this comes very easily because of this  goes

to  you can see that this the diameter of the intersection will also become 0. So, diameter is

0 the set  can be what? Only singleton. Anyway if  ,  you know then   will  be



positive therefore, it will be bigger than  for large  because  is converging to 0.

Once it is bigger than  both  and  cannot be inside , right? If it is not in one , it

cannot  be  in  the  intersection.  So,  any  point  which  is  not  equal  to   is  not  inside  the

intersection. So, there is only one point. So, that is a proof ok?
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Now, I have to make a definition because there is  a new term in the Banach contraction

mapping, in the statement itself. So, take a function from one metric space to itself OR to

some other metric space also, this will work. But right now,  I need only this definition. 

We say  from  to  is a contraction mapping or just a contraction if there exists a positive

constant , this strictly less than 1 is important, such that the distance between  and

 is less than or equal  times the distance between  and . For example, if  is half each

time you apply  , ok? What happens? So, two points at distance one will go to points less

than  half  the  distance  apart  next  time  one  fourth  and  so  on  ok,  that  is  the  meaning  of

contraction mapping ok?

If you talk in the Layman's language and take a map of your campus or a country or just a

state, say. If the map is up to scale definitely, it will be a contraction mapping, ok? From the

actual object of which it is a map to the map. You can think of holding the map in your hand,



you know, you are standing in the campus or the country.  So, the map is inside. So, the

function  is from the country into the country, but it is a contraction mapping.
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Now, what does this theorem say let us see, ok? So, for example, contraction mapping is

always continuous because I want to control distance between  and , I can choose 

equal to , that is all. So, this will be less than . So, continuity is obvious. By the way this

condition constant   on both sides we are familiar with that. That gives equivalence of

metrics right? Similarity of metrics. So, this is not a strange condition at all it is quite a nice

condition it implies continuity. 

Contraction mapping can also be defined from one metric  space to  another  metric  space

which I already told you. 
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So, the theorem says that if  is a complete metric space and you have a contraction mapping

 from  to , then  fixes a point. Fixes a point means that there is some  in  such that

 equal to . Moreover such an  is unique. So, then there exists a unique  belonging to

 such that  equal to , that is the statement.
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The proof this time is slightly little longer than that of Cantor's Intersection Theorem, alright.

So, let us first take care of uniqueness. Suppose there are two points  and  such that  is

equal to  and  equal to . Then you apply you know,  ok?  ;

 is  ok  is equal to . So, it is  equal to , but because it is

a contraction mapping it is less than equal to  , but  . So, this is cannot happen

unless   is  0,  which is  same thing as  saying   is  equal  to  .  So,  the proof  of  that

uniqueness theorem uniqueness part is as easy as in the first part. 

Now for the existence. So, one may say that you know, this Banach's contraction mapping

where he got the idea? maybe he got the idea from Newton. People who are familiar with

some elementary numerical analysis, they will know this kind of iteration method, you know,

which was also used by Picard and others. So, start with any point ok? Apply  . If it is a

different point apply   again, if it is different apply   again. Your   will be equal to  

eventually. That is the whole idea.

But it may not happen at all. So, that is where the ingenuity comes. So, do not give up the

method yet. So, so look deeper into it that is the point. So, you start with some  belonging

to . Inductively define   to be the image,  . So, apply  to that previous one and

take that as . 

So,  is any point. I do not mind.  will be  will be  and so on. So, claim is

that this  is a Cauchy sequence. So, this time it is not all that obvious you have to do a little

more work that is all. You know in the case of CIT, it was easy to see that  is a Cauchy

sequence ok. Once it is a Cauchy sequence completeness comes into picture. There will be a

limit point; the limit point of this sequence, ok? The beauty is that that limit point cannot go

anywhere else,  has to be  itself ok? So, that is the point we are seeking. So, let us see

how the proofs of all, these claims are coming.



(Refer Slide Time: 14:24)

So, put  equal to distance between  and . We are assuming that  is not equal to , ok.

If  is equal to , then there is nothing to bother about going further at all because then what

is ?  is , if it is equal to , that is fixed point, we are home already. So, anyway we

are not going to use that. Put  equal . Then look at distance between  and . That

is, by definition distance mean  and  because  is  is , but then this

is, by contraction mapping part, less than  times distance between  and . This we have

denoted by . So, it is less than . So, distance between  and  will be less than or equal to

, alright? What happens to distance between  and ? One more  will come, one more 

will come and so on right?

So, inductively distance between  and  will be less than or equal to , ok?  So,

 is less than ,  will be ; the index will be one less here. Then it

follows that distance between  and  ok, is less than or equal to  , ok, once you

have proved this one.

Therefore, if you look at distance between  and , see we are trying to prove that this

is  a  Cauchy  sequence  right.  So,  distance  between   and   is  less  than  or  equal  to

.



I start with   go to  go to   go to , I use triangle inequality and

then I get the summation. So, distance will  to , ok. So, this is a summation.

But each of them is . We can rewrite it;  will come out from the summation  ranges

from  to  of . What you know is , therefore this is a geometric series

ok? Mother of all series. So, this is a convergent series we know how to compute the limit

also anyway.

So, geometric series because  ; and hence the partial sums  ranging from  to   of  ,

they are Cauchy sequences ok. So, this is this is just the difference between  partial

sum and  partial sum, I have taken right? So, if this sequence of partial sums is a

Cauchy sequencem this number can be made less than . So,  times that will be less than 

for sufficiently large . That means, this is a Cauchy sequence, alright.
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So, starting with a point  and repeatedly applying  and so on, we have got a Cauchy

sequence, that sequence converges. Take the limit say , ok? Now, we apply  , which is a

continuous function right? We apply  on . What is  is limit of all these 's, but , I

can write it as  . So, I can take it  as   and write it as  , ok? because   is



continuous,  applying   is same thing as limit  of  ,  but limit  of   or   or

whatever, as  tends to infinity is same limit which is .

So,  is a fixed point of , uniqueness you have already proved ok.
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So, the third theorem takes a little more time. Therefore, let us first consolidate these two

theorems today and we will do the third theorem next timem ok? So, let us look at some easy

comments here on this. Look at the Cantor's Intersection Theorem ok? What are conditions?

 goes to 0, Oh-ho!   or  whatever ok, 's are closed,  is complete ok? and 's

are one contained in the other. The point is if you violate any of those conditions something

will go wrong, ok?

So, conclusion will not be as strong as you like, or conclusion may not be there at all ok? For

example, suppose  does not tend to 0 ok? but because they are smaller and smaller it

may tend to something finite, but a positive number, then you will not get the uniqueness.

You may be able to prove the existence, that is, intersection is non empty. There is some

point, but you will not be able to prove that it is a unique point ok?



Similarly, existence itself will be violated if we do not put the hypotheses nested. If you take

arbitrary subsets ok?  You know without any relation between them maybe

half  of  it  is  contained  in  there  or  they  are  disjoint  and  so  on,  there  may  not  be  any

intersection, intersection can be easily empty right? now that is not very surprising ok? The

third comment I make is that here it is easy to construct a nested sequence of closed subsets

of 0 to infinity, by the way 0 to infinity, is a complete metric space such that all the diameters

are infinity yet the intersection is empty ok?

So, here the diameters are not decreasing to zero or any finite number, they are all infinity.

Yet the intersection is empty ok? Can you think of such a sequence? what should be  for

each ? Remember they must be closed subsets and  should be containing  containing

 and so on smaller and smaller. Can you think of such a sequence?

Student: Yes sir, if I take .

Right put   equal to   very good. So, intersection will be empty it satisfies all other

things,  but  now   it  is  not  converging  to  0  all  the  time,  it  is  infinity  ok?  Yet  the

intersection  can  be  empty  ok.  So,  here  is  another  question.  Can  you  construct  a  nested

sequence of subspaces  with finite diameter such that the intersection of  is empty? You

can do it in  itself? Note that this time I am requiring nested sequences of diameters finite

also but I am not saying diameters converge to 0.

But what I am not saying is that they should be also closed right? there is no word `closed'

here. So, is it possible? No? Think of some subsets of the open interval .

Student: Open interval .

Yes.  Instead of going up, n to infinity, here you take  , right? Intersection will be

empty. Now, can you do the same thing as you did, but this time all 's closed; closed and

nested, that is all. I am not asking for diameters converging to 0. Is it possible? This is a little

more harder right? So, think about this. 



The next one is little more harder also. Can you do the same thing as (b), but in  with the

usual metric?

So, this is a hint for the other one. maybe you can change the metric ok? And then try to do

that not in the usual metric. 

So, (c) is much harder. So, think about them we will answer them in due time, maybe as an

assignment. You can work it out. Then we will explain it after checking your answers. We

will explain you the result ok? So, that is all for today. So, let us meet next time.

Thank you.


