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Welcome to module 17 of Point Set Topology course. This time we shall consider a few more

interesting examples of topological spaces. The most interesting one that we are going to do

today will be a subspace of  itself. Before that let me consider a few things which are out of

, not from the usual topology.

Start with any infinite set then I am denoting this topology  cofinite. So, you can

read it as co finite. So, what is this? It is the collection of all subsets  of  such that  is

finite. Of course, I will have to allow  to be empty also because complement of an empty set

is the whole space, and in this definition I do not have that one right?  is finite. If  is

 of course,  it  is allowed,   is empty is not allowed in this rule.  So, I  have to allow it

specifically.



So, either  is empty or  is finite, then I put it inside this collection co-finite topology.

So, I want to say this is a topology ok? So, this is called the co-finite topology on the given

set X. Once you consider such a topology, it is no point in considering  to be a finite set.

For then what happens? This becomes just  the discrete,  because all  subsets will  be there

because their complements are also finite.

So, it is interesting only when you take  to be an infinite set, ok? How to verify that this is a

topology? That is not very difficult because what you have to do? Once you take two of them

 and  , right?  What is the complement of intersection? It is the union of the

complements right? So, each of them is finite so, union is also finite.

So, intersection of two open sets is open or intersection of finitely many open set is open The

union of arbitrary families is open because as soon as one of them complement is finite if you

enlarge it larger and larger say it would be automatically finite. So, that part is easier here.

So, that will verify that this co-finite becomes a you know family of co-finite subsets can

become a topology. We will have many many instances and usefulness of this one throughout

the course, ok?

So, this is going to be kind of model for us. One of the interesting property you can directly

verify it right now namely take any point in   look at all the neighbourhoods of this point

intersection is precisely the , that is the only point.  is common to all the neighbourhoods

ok? So, verify this statement just to begin with getting familiarity with this co-finite topology.

We will have many instances of studying this one. So, this is just an introduction right now. 
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Similar to this one, but not so important is the following, ok. Take  to be an uncountable

set. Let  is in a co-countable denote the set of all subsets such that either its empty that

empty set is allowed or the complement is countable. Now countable includes finiteness as

well as infinite countable also ok. So, countable means that alright.

So, once again verification that this is a topology is identical to the previous one there is no

problem ok, because countable finite union of countable sets is countable. That is all I am

using here ok. So, this is called the co-countable topologies just similar to co-finite topology

ok. So, it has similar properties. Once again there is no point in taking this topology when 

is a countable set then again it will be a discrete topology. Therefore, I take  to be starting

with with an uncountable set ok, right.
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Let us go to the 3rd example here. Actually there are two of them. This time I consider the

underlying set  itself. But topology is different. So, I better write it with different symbols.

So, here I have used  (respectively ) to denote collection of all intervals of the form

 open, to denote that these are left handed rays   (respectively  ),   for ray.

Instead of arbitrary notation. 

To  indicate  that  they  are  unbounded,  we  are  using  the  term  rays.  They  are  unbounded

intervals right? Unbounded below in . The other ones, in , intervals of the form 

,  varies from  to .  a to infinity, right rays ok. Where, this  ranging?  can be taken as

all the way from  included to  including. What does it mean? Open interval infinity to

infinity means empty set;  minus infinity to infinity means the whole of . Open interval I am

taking remember that. So, that will be just the whole of , ok?

So, this forms a topology because if you take intersection of  with , look at

whether  is bigger than  or  is bigger than , intersection would be just smaller one. If you

take some ’s here and take the union then the union will be what? Take the supremum of

these ’s and take that open interval from minus infinity to the supremum.  



Exactly similar things hold for   also. Here you may have to take infimum to show that

arbitrary union of open rays is again an open ray. So, this is even simpler than the topology in

which all open intervals are allowed right? the usual euclidean topology. So; obviously, in

both of them there are fewer open sets than in the usual topology on .

Also, they are different topologies in any case. For example, the open ray here to the right

will not be an open subset in the , see and vice versa alright. So, these things are again

important in ah ah analysis. So, when an opportunity arises I will again refer to this one.
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Now I come to the what I told you the most important example. This time I have a subset of

 itself with the usual topology, ok? So, this is called the Cantor set which is a landmark

result in topology ok, a landmark result by Cantor. First we shall define an operator. You may

read it as Cantor I do not know how to read this symbol here I read it as Cantor. On the class

of all closed intervals  less than , ok? I am not interested in singleton intervals,  less

than . 

So, closed intervals like that into the class of all closed and bounded subsets of  , ok? So,

what is this   is going to be an operator. It takes a closed interval and then produces a

closed and bounded subset of the same interval , ok? So, prior to that we define another



simpler operator  on the class of finite union of disjoint closed intervals which you may call

the middle one-third deletors, ok? So, this funny name we will explain it right now. Start with

any closed interval, you may denote it by , ok? or say .

Let us define  to be the set obtained by deleting the open part of the middle one-third of

, open part. So, in notations how to state this? 
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The open one-third is nothing but  . So, delete that from  .

So, what you get is a disjoint union of two closed intervals. So, that is the definition of .

Take any closed interval   or   or   whatever.  So, it will produce two disjoint

closed interval each of length one-third of the original one.

Right from the starting point to that one-third distance and then two-third distance the end,

ok, very simple operator. The middle one-third is deleted that is why it is called middle one-

third deletor, ok?  Now you extend  to the union of finitely many disjoint closed intervals

ok.



So,  is union of disjoint closed intervals , define  to be union of . So,

here I have defined . So, that is how you will define , then take the union of

these ones they will be again disjoint because each  is contained inside  and

they are disjoint to begin with. ok? So, this is just extending the definition from one interval

to finitely many intervals. So, the definition of  is over.
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Now, what we do? Now fix one interval , ok? Let us call it the  inductively define say

 will be what? ; that means, first I delete middle one-third of . Now I

have got two intervals there. Operate  on that, ok? So, that is what I have to do, ok? 

will have four intervals right? Take that as  and so on.

So,  will be . So, when you come to  level there will be how many intervals? 

intervals will be there. They are all disjoint with each other. All of them will be contained in

the previous ones.  So, this is  a  strictly monotonically  decreasing sequence of  closed and

bounded sets right? The number of intervals strictly monotonically increasing. What I am

going to do now?



Finally the Cantor of   it is in operator, it is just an intersection of all these. It is like

taking the limit.  Limit  of  sets,  but  limits  of  decreasing  sequence  of  sets  is  defined  very

easily-- just take intersection of all of them, ok? This is the definition. 

One thing is very clear that because all these are closed subsets this will be closed. So, this is

a closed and bounded subset starting with an interval I have produced a closed and bounded

subset of  itself. This  is , then all these are subsets of that ok?
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So, here is a picture what I have done. Start with one interval delete the middle one-third, we

have two intervals here. Now look at this one delete the middle one-third. So, this will give

you 2 here, 2 here. So, at the second level already you have 4 of them. Now delete one-third

here delete one-third here and here also. So, the third level you will have 8 of them and so on.

So, keep going on so on so, you will get lot of things looking just like dot dot dot dot dots ok.

So,  that  the  limiting  thing  is  the  Cantor  set  ok.  The  function   is  called  the  Cantors

construction ok. 
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Now I am taking a specialization instead of  put  the standard unit interval. Take the

closed interval   apply the Cantor operation let us denote that by  , ok? Usually when

someone says Cantor set, it means means this one. But, one actually the word is used in a

wider sense, to represent all topological spaces homeomorphis to  also. The sets  so,

whenever there is arbitrary , I will write like this. 

This space has some wonderful properties ok?

So, let me list a few of them. Not all these properties may be easy for you. Some of them may

need some concepts which you not know. But this is actually a topic in analysis. So, I will

just list them right now. I may not explain all of them to you, ok. Quite a few of them I am

doing here, the easier ones. or I will explain them right now ok? 

The first thing is   is non-empty I already told you it is closed and bounded that is

easy. Why it is non-empty? So, this is because of compactness of . So, the first thing is

very important here it is a non-trivial thing, but this is non-empty. If  is one of the intervals

contained in  so, what I mean by say? Look at this picture this is  any one of the

.  Look at  one of these intervals  the small  intervals,  ok.  The intervals  I  am talking not



arbitrary intervals it is not just a subset of these interval, but one of these intervals,  just take

that.

If  is one of the intervals contained in  for some  then if you look at  that would be

also a subset of . You can just apply  of that because  is an operator operating on

any intervals closed intervals. So,   is contained in   which is contained in  .

The  endpoints  are  always  inside  .  See  endpoints  are  never  deleted.  These  two

endpoints this endpoint this point ok. So, beauty is to begin with I can say this here endpoints

they are not deleted.

But now this point and this point will  never get  deleted because from here I could have

started and arrived at one. So, this point the end points are never deleted. So, same thing is

here endpoints these endpoints are never deleted. So, in the end these endpoints are all there

they are never deleted. If something is somewhere in between you will never know whether it

will be get in deleted. So, that is the beauty of this.

So, there are all the endpoints of successively cut-off intervals they are all there that is the

whole idea. Though I say it only for  because it is true for all sub intervals also, ok. Now

take the map  equal to . This is a linear map ok? What does it do? Put 

you will get , put  you will get . So, that is a linear map homeomorphism from  to

 right?

It just expands. This one-third becomes   right. So, what happens is the Cantor set

 and cantor set of   this is  , they will be isomorphic under this continuous

bijection. So, this map preserves the Cantor construction. First of all I have defined it  to

. The middle one-thirds correspondingly get deleted. This map is not an isometry because

its  is expanded to  right, but it is a similarity. 
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From now onwards, I will just concentrate on the Cantor set . Each of the properties

of , which we list below is carried over to an identical or similar property of  right

because of similarity map. So, that is why I do not have to mention it separately for all of

them once I say it for . it will be true for  for all of them.
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So, here are some more properties of , ok. These are special in the sense that they are all

points between  that is the specialty ok. Topologically, when you have a similarity you

have to make the corresponding numerical modifications. The endpoints of every component

of  they are all in . This is what we have observed already. 

The set of all rationals of the form summation over  equal to  to  ok, the finite sum a 

ok? What are a ’s? Here  is either  or , this sum is contained in . Why this is true? Look

at the very first interval in the sequence. Everything from here to here is one-third from here

to here one-third plus something, ok, But those point are not there, and finally from here to

here, these are two-third plus something that will be always there.

So, elements of these intervals may survive. Accordingly, the first coefficient  will be 0 or

2. The sum will be then  of something or two third plus something. So, that is what this

means.  Ternary  expansion  is  what  is  being  done  here.  I  am  writing  every  element  as

 and so on right? So, there is that sequence , these ;  These  are

generally 0 one or 2 but the claim is that  will never be equal to 1, ok? They are either 0 or

2, ok. This is an easy consequence of the construction here. The middle one-third is deleted,

ok. All the rationals of this form, ok, they will be there, alright. 

Now,  contains no open intervals that is a first observation ok that I am making which is

now a serious one. Start with any open interval ok? So, first of all it should be inside 

right? Say, it  is somewhere here.  What happens? Go on making one-third,   and so on

finally,  some  small  portion  will  lie  between  the  same  interval  because  the  interval  has

positive length and that one-third portion will be get deleted, ok. So, that is easy to see. So,

no open interval will be contained inside the Cantor set in the final stage, ok? At any finite

stage,  they are there are there these are intervals. But at the end there are no open intervals

inside . 

What is the meaning of that interior  is empty? It  is  a closed set already.  Therefore,  it  is

nowhere dense you see. So, suddenly we have constructed nowhere dense set here ok. So,

where are we? Here ok. So,  contains no open intervals. In particular being a closed set it is

nowhere dense otherwise, I have to take a closure and then look at the interior.



So, closure of  is  itself. Therefore, interior of that is empty. So, this means its nowhere

dense. Every point of   is a limit point of  . Limit point means cluster point. Is that very

difficult to see. Take a point of  with a limit point of  take an interval, ok. There will be

some other point other than that that point that is all, I have to see right. 

So, no point will be isolated, ok. So, for this kind of thing you can just glare keep glaring at

this construction one by one you can you can produce that or you can use your arithmetic and

compute things and so on just look at every element of this you know this form, ok. So, near

that you can take any  here you can produce one more element other than this one, ok. So,

that kind of arithmetic will produce proofs also. So, it is not all this difficult. So, what is it?

Every point is a cluster point every point is a limit point, ok, such sets are called perfect sets.

So,  is equal to .

The fifth property is  is uncountable. So, this follows by looking at all these distinct points.

Suppose you have a sequence here ok, you can take infinite sequence also. See this I have

said here. Look at all infinite sequences the entries are either 0 or 2. Take a sequence and then

form this sum. This will be convergent sequence ok, right.

If you truncate it at a finite level, all these points are there therefore, the limit is also there

because it is a closed set right. So, infinite sequence is of this form  whatever

number here in the Cantor set, but these sequences are themselves uncountable, ok. Now all

that you have to see is that if you take two different sequences they will always give you

different numbers, ok.

This  is  similar  to  what  you  do  with  dyadic  expansions.  So,  here  we  are  doing  ternary

expansion, you could have done it with any number here with decimal expansion also you

could have done ok. If it is one-third there is a charm here which is not there with some other

number.  So,  we  will  see  that  form come to  that  one  later  ok.  So,  so  where  were  we?

Uncountable  is of length 0. Now you may not know what is the meaning of length of these

arbitrary subsets here right.

If you do not know that do not worry about that, I will tell you what it is whenever it is

needed. The third the last point here I am going to make: given any two points inside  ok so,



say assume   is less than  , there exists disjoint closed subsets   of   such that   is

 and  are disjoint closed,  is inside  and  is inside . So, such a thing is called a

separation. Whenever any two points can be separated like this, such a set is called such a

topological space is called totally disconnected.

So, do not worry about this one. This is a very profound topological property which we will

discuss in part II. But this property I have very nicely defined and this can be proved right

directly there is no problem for the Cantor set, ok? For the Cantor set, we will prove this one

alright, that is not very difficult.
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So, in any case I have put all these proofs here also. Let us do the last one first and then come

back to all of them. 
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So, look at this one. Take any interval . This interval is not contained inside  which we

have observed earlier. So, take a point  between  and , strictly between  and  which is

not in . If it is not in  what happens? Take  equal to the closed intervals  intersect

with  . See this is a closed subset of  ,  its  intersection with   is  a closed subset of  .

Similarly,  equal to , ok.

 contains  ,  right.  So,   is  inside  .  Similarly,   will  be  inside   and  by the  very

definition  the  intersection  of   with   will  be  just  ,  but   is  not  there.  So,

intersection is empty ok. So, both  are closed in  is inside  inside  and  is

empty. So, this is a proof for last property, ok? 

Now this  is  what  I  am telling  you.  What  is  the  meaning  of  length  is  0  ok?  What  am

subtracting? First, I am subtracting one-third of the original right? Then I am subtracting ,

right?  So I am trying to approve this   is of length 0, ok? You sum up the lengths of all

interval subtracted, that is equal to 1. 

This totality of total length of all the intervals that I am going to subtract first this is one-third

then from whatever remaining I am taking one-third here one-third here is 2 by ninth of the

original, then one-third here one-third here one-third one-third one-third that will be 4 by 27

and so on.   



So,  this  is  nothing  but  one  third  of  the  summation  ,  sum total  is  1.  So,  whatever

remaining is 1 minus 1. So, length will be 0. 
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So, I think I have written down all these proofs here more carefully you can go through that

you  have  got  the  notes  in  any  case.  So,  why  interior  is  empty  I  have  explained  it  is

completely here. So, this Cantor set is going to play a lot of interesting role in analysis and

also in topology ok?
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So, once again let me give you some exercises here alright. Start with the set  equal to all

 belonging to  and include 0. Now compute all these things under the usual topology

of  ,  under  these different  topologies,  co-finite topology, co-countable topology and  

topology. And the original topology you have done it already. Now you do it for these three

topologies. 

Once you do it for , it is similar to . So, it will not be much difficult for you that is

similar ok. So, do that exercise.
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Here  there  is  another  exercise  about  convergent  sequences  and  dense  subsets.  We have

described the co-finite topology and co-countable topology ok? All this does not need many

more education. You have been given the definition of a convergent sequence, meaning of

dense subset and so on. You have to work out for them for here ok.  

A sequence converges to a point if for each given neighbourhood, there must be some  such

that  means  is inside that neighbourhood. So, that is the kind of definition. But now

you apply it to cleverly chosen neighbourhoods of points inside co-finite topology and see

what happens. Similarly for this one see what happens, ok. So, that will be the ah ah material

for today, let us stop here.

Thank you.


