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Welcome to module 16 of Point Set Topology course. Today we will  discuss once again

about interiors derived sets and so on, just like whatever we have done for closures etc last

time.  Start  with a  topological  space   and   be any subsets then the following three

statements  are true about the derived set.   contained inside   implies   is  contained

inside  . The derived set of   is contained in the derived set of  . The derived of the

union is union of the derived sets.

The  derived  set  of  the  intersection  is   contained  in  the  intersection  of  the  derived  sets,

 is contained in . Proofs are all straightforward. Moreover, more or less

similar to the corresponding statements for the closures. So, I will leave the proofs to you to

write down as an easy exercise.
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There is one more remark just like in the case of closures if you take infinite union then only

containment will be there,  this number, 2 will be replaced by containment. The derived set of

an infinite union of 's is contained in the union of the derived sets of 's ok? So, that can

also be done. So, now, let us go to another important auxiliary result about, of course, this is

again about interiors and closures and so on, but this time it is about the so called nowhere

dense sets. 

Later on,  we will use this in proving some major theorems about metric spaces. Right now

this is  in a general  topological  space.  This theorem gives you 5 equivalent  definitions of

nowhere dense sets.

The first statement I have included as number (0) here, (0), (i), (ii), (iii) (iv). So, there are 5

statements  here.  Start  with  a  subset   is  dense  in  .  Of  course,   being closed

always,  is open that part is easy. So, the first statement here is  is dense in .

The second statement is interior of  is empty. This was the condition for  being nowhere

dense in our definition. The closure of   should have interior empty. Third statement is  

does not contain any non empty open set in .

The fourth one which is third here, is, each non empty open set of  has a non empty open

subset disjoint from  is given ok. So, these all statements about  or . Each non empty



open  set  in   contains  a  non  empty  open  set  disjoint  from  .  So,  all  these  things  are

equivalent. But we shall prove it in a systematic way, in an economic way by proving (0)

implies (i) implies (ii) implies (iii) implies (iv) and then (iv) implies 0 ok?
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So, that is the plan. So, (0) implies (i): statement 0 is what?  is open and dense in ,

ok. That is the statement (0). Look at interior of , ok? Interior of any set is an open set. So,

interior of  is an open set and it is contained in . Therefore, it is disjoint from  itself,

but then  will not intersect that open subset ok; that means, it will not be dense unless

that open subset itself is empty.

So, some  is given to be dense implies that interior of  which is disjoint from 

must be empty. So, interior of   itself is empty ok. Now assume the statement (i). Let us

prove (ii) ok? So, every open  subset of  is a subset of interior of , right? Statement one is

interior of  is empty.  does not contain any non empty open subset in  is what we have to

show. If it does that non empty open subset will be inside interior of , which is empty. So,

that is proves (ii).



Now the proof of  (ii) implies (iii).  If   is a non empty open set in , look at  equal to

. This is an open set, this is an open set. This will be another open set. It is an open

subset of  since  is not contained in , no non empty open set is contained in , right? 

must be non empty because if it is contained inside , then this should have been empty, non

empty means that is something here ok. So,  is non empty. Now, (iii) follows because  is

contained inside  and is disjoint from .

 So now (iii) implies (iv). Statement (iv) says each non empty open subset of   contains a

non empty open subset disjoint from . Some set is disjoint from , then it will disjoint from

 also ok?

Finally, assuming this statement (iv), we have to show that   is open and dense in  .

Openness is obvious. However, I have to show that   is dense in  . That means, take

any non empty open subset it must intersects , ok? Something intersects with  if

it is not contained in , ok?

Take any non empty open subset, it will contain a non empty that disjoint from . So, that

portion will not be contained inside . So, it will not be contained inside  either, ok? So,

these terminologies are just you know a topological one, but what is the point of doing this

one? 

Suppose you want to deal with a nowhere dense set then at a particular place you may be

using this property, this property, this property or this property, any one of them you can use

and sometimes using just this much is easier whereas, using this one will be easier at some

place and so on. So, this is this fifth fourth one which looks somewhat tedious one ok. This is

what  is  going  to  be  applied  soon.  We  are  going  to  use  it  in  proving  Baire's  Category

Theorem.
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So, we come to the theorem in metric spaces now. Let  be a metric space. A subset  of 

is nowhere dense in , if and only if each non empty open set in  contains the closure of an

open disc disjoint from . Now, because we are working in a metric space now, we can talk

about discs and its closures and so on ok. Just now what we saw is that if  is nowhere dense

set, every non empty open subset contains another non empty open set which is disjoint from

.

Every non empty open set in a metric space contains a closed ball of some positive radius,

any ball of positive radius ok, it is the closure of the open ball right. So, that is what we get

now. So, start with a non empty open set ok, which is disjoint from , inside that open set

take a ball ok, such that even its closure also is contained inside that. 

That you can do because once you start with an open set, and open ball inside that we can

take smaller and smaller closed balls ok. So, this comes very easily, but this is what we are

going to use later on.
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So, I repeat this one. By statement (iv) of the previous proposition, if  is a non empty open

set  in  ,  it  contains a non empty open set   disjoint  from  .  Choose an   and  

positive such that  is contained inside , then  is contained in , not only

that its closure is also contained in  and this  does not intersect , ok.
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So, you just remember that interior of   being empty the definition of nowhere dense set

because of the above theorem anyone of the five conditions can be taken to play the role of

the same thing this is what I have already remarked ok?
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Now, coming to the metric spaces, we have a few remarks to do about sequences ok. Start

with a metric space ok. Take a subset   of  ok. Take any point. This  will be inside the

closure of  , if and only if you can find a sequence   of points inside   such that the

sequence converges to , ok. The second statement is: the point  is in the derived set of ,

(is a limit point) if and only if there exists a sequence  of distinct points in , such that

 converges to , ok.

The difference  between these  two statements  is  that  in  the  first  part  you  can  take some

constant sequence of   converging to . Now,  itself is . So, that is not

allowed here in the second one.  If  is a sequence that always converges to  that

does not mean that  is inside , it may be just inside  that is all ok. So, cluster points

have special property. So,  there must be a sequence of distinct points such that sequence the

converges to , ok?
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So, let us see the proof of this one. Start with a point in the closure. For each , we know

that if you take , the ball, open ball of radius  intersection  must be non empty

because  is in the closure. Therefore, we can pick up a point  inside this . So,

this will be sequence in  , but the distance between  and  becomes smaller and smaller

 right  as   tends to  infinity  this  will  converge  to  0.  So,   converges  to  ,  ok.  The

converse that if there is a sequence converging to  and a sequence is in , then it is inside .

This we have seen several times. 

Now, the second part. Suppose   is a cluster point, it is a limit point of  , We know that

 is non empty, for all  positive. Start with , you know  equal to  equal

to 1. Choose  and not equal to . Take a point  not equal to , but inside  ok.

Look at the distance  namely distance between  and  divide it by by  is the distance

divided by . Inductively, having chosen x_n in , as soon as you choose 

look at this number  equal to , ok.

Use this  to choose the next  and on. Here once you choose  is like this.  will be

chosen inside . So, the distance between  and  goes to what? You know

each time the distance is  less than see   is something whatever,   is something,   is

distance between  is less than . Next, it will be  will be  and so on. So, at  will

be less than . So, that will come down to  ok.



Why this sequnce consists of distinct points?  Because look at this one,  is somewhere, but

 will be inside this distance. So, distance between  and  is , distance between  and 

will be  or small r therefore, they cannot be equal. So, next one which we will choose its

distance between  and  will be smaller than all the earlier distances. So, this is a disjoined

you know this is the distinct sequence of distinct points that is why it is so ok, ok. So, you can

write down the converse of this one also it is very easy anyway.
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So, let us consider some functions between metric spaces and topological spaces first of all

and put the put them in the proper perspective. Now, start with  from  to , a set

theoretic function ok. Then  is continuous, it is statement (a). 

The second statement is that for every subset   of  , which is closed in  , the   is

closed in  . Remember what was the definition of continuity, for every open subset   of

 is  open.  That  was  the  statement  for  continuity  of  a  function.  That  one  was

statement (a). So, in statement (b),  open sets are replaced by closed sets. 

The third one is even much better. For every subset  of  is contained in the .

So, this is a forward statement. (a) and (b) were backwards. Starting from subsets of , you

get some conclusion subsets of . Here it is the other way around, ok? 



And (d) is also similar, but in the reverse way for every subset  of  is contained

in the interior of , ok? These are all equivalent just means that you can use any one of

them to define continuity of a function from any topological space to another topological

space ok, that is the statement.
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So, let us look at the proof of this one which is not all that difficult. First let us prove (a) and

(b) are equivalent. This is just by De Morgan Law. If  is an open subset  is a closed

set.  is same thing as .

So, inverse of closed subset  are closed subsets. So, you just use one way (a) implies (b)

implies (a). Because you know that the compliment of a closed set is an open,  and f inverse

behaves very nicely under complimentation.

Now, let us prove (b) implies (c) ok?  (c) is what? Start with any subset  of , ok. So, what

you have to prove that   of the closure of   is contained in the closure of  , ok?   is

always contained in , ok?  And  is contained in closure of . Therefore, 

inverse of that is contained, , ok? Now, closure of any set is closed. Condition (b)

says  inverse of that is closed. Therefore,   is contained in this closed set. Therefore,   is

contained in this set, ok? because closure of   is the smallest closed subset containing the



given set . So, this is a larger closed subset. Closure of  is the smallest closed subset in .

So, it is contained here, but this is same thing as if you put  here,   is contained in the

closure of .

(c) implies (b) is what I want to show, the other way around now ok? So, start with any

closed subset  of . By (c), we have , you do not know what it is ok, closure of

,   of that  is,  by (c) is  contained inside closure of   which is  contained in

closure of . So, it is contained closure of , this one is contained closure of  ok. But  is

closed therefore, closure of  is .

So,  of the closure of  inverse is contained inside . This means that this closure of 

is contained in  ok? But then equality holds ok? Because closure of any set contains

that set. So, they are equal ok and hence  itself is closed because this is the closure of

that, ok? 

The proof of the last statement is almost similar. Again something like De Morgan Law we

have to use. So, I will leave that as an assignment to you namely  inverse of  is contained

in , ok. You should not take more than two lines. You should write down ok.
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So, here are some exercises   equal to the set of all   and one extra element 0.

Take the subset  etc. Then include 0 also. Under the usual topology from ,

compute , , ok. So, this is an easy exercise.
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So, this is an easy exercise. 
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Similarly, there are some more exercise here which you can take. Now, there is also this

Kuratowski's closure axioms, formulate four axioms for interior operator, obtain a topology

associated  to  it  and  prove  that  the  operator  coincides  the  usual  operation  of  taking  the

interiors, similar to Kuratowski's closure axioms ok.

(Refer Slide Time: 25:18)

So, let us stop here today. Next time we will study more examples.

Thank you.


