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Welcome to module 15 of Point Set Topology Part 1. Last time we did something about the

closure of a set and closed sets right. So, similar thing we will try to do for interior of a set

and boundaries of a set and such things ok. So, most of them are similar in nature, but you

have to be more careful that is all.
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So, start with a topological space again,  and  are any two subsets of . Then I have these

seven properties listed here. The first one is interior of empty is empty. It is similar to closure

of empty set is empty and interior of   is the whole of  . Again closure of   was   is

similar to that right? So, there is some similarity, but do get carried away. You have to be

very careful.

 contained in  implies  is contained in . This is similar to the closure property by the

way.  So,  how do we prove that?   is  all  those open sets,  union of all  those open sets

contained in  , but then they will be contained in   also. So, they will be contained in  

interior ok, because  is all those open sets contained in . So, this is also obvious. 

Finally,  is open if and only if  is , ok? So, this is similar to  is closed if and only if 

is   closure. Here  is open if and only if A is ,   is equal to , ok? So, why? If   is

equal to ,  is always open set because it is union of open sets. So,  will be open. If  is

open this it is the largest open set already. All other open sets are already there. So, I have to

take this also that will be interior right. So, A will be equal to . 

 is the largest open set contained in . So, this is somewhat you know complementary to

similar,  but  complementary to  a  closure.  Closure  was what?  The closure  of  a  set  is  the

smallest closed set containing that set containing that . So, it is exactly you like applying De

Morgan law. Exactly the opposite property.  is the largest open set contained in ; yeah I



could have put  here, but deliberately I have used  here you will see. So,  is open set we

know. Suppose you have another open set contained in , but then  is the union of all such

things. So, it will contain , it is contained in . So,  is the largest open set. So, these are

all just restatements of whatever we have done, they are not very difficult, slowly. You have

to be bit a careful. 

Interior of   is  . Here again interior of anything is an open set right and it is

contained in the  here, therefore, is contained in . Therefore, it is contained in , but

same argument for interior  also. So, it is contained in the intersection. So, this this side is

contained in  the this side,  LHS contained in RHS is obvious.  Now, how to show this is

contained here? Look at this one.

Interior of   is an open set, interior of   is an open set, intersection is an open set,   is

contained in , ok? So, this intersection is also contained in  is contained inside . So,

its intersection is contained inside , but it is an open set. So, it is contained in the ,

ok? 

So, this last one here  contains the . So, there is no equality assertion here,

ok? It is only one way and that is obvious because  is subset of  right? So, it is a subset of

. Similarly,  is subset of . So, this whole thing is a subset of , but this is

an open set being the union of two open sets. Therefore, it is contained the interior. So, one

way is clear.  

Further if  and  are disjoint open sets or disjoint closed sets. Disjointness is common; both

of them are open or both of them are closed that is what we have to assume ok? Then equality

holds. So, let us see this one. So, all these things I have written down here, ok? 
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Starting with the definition, what is the definition now? This one, that   is a union of all

open sets contained in , this was the definition. So, you can take different definitions then

your proofs may be somewhat slightly different ok? That is all. I have taken this definition, I

have done it ok?
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So, I have gone through 1, 2, 3, 4, 5, 6, 7 and so on up to here, interior of A intersection

interior of B is contained.
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So, I have gone through  and so on up to here,  is contained. 7th one,

one part we saw ok? First part directly from 3. Now, I want to show the second part here.

Namely, suppose  is empty, ok. If both  and  are open then the union is also open.

Therefore, interior of A union B,  is already open. So, you know  is equal to

, but  is  is  because  and  are open. So, equality is obvious alright. 

So, perhaps you have not used the intersection is  empty here at all right. Now, suppose both

 and  are closed, this time you may have to use that alright? Suppose both  and  are

closed subsets and I assume  is empty. Let  be an open set contained in the union, ok?

Suppose  is an open subset contained in . If I have to show that interior of this one is

equal to  , I  must show that this open set first  of all  is  contained in the  

separately. So, first of all you can write this  as union of two subsets here. One is 

and the other . This is possible only because  is empty. 



 is empty would mean that   will be the whole space. Therefore, every set is

contained in the whole space. So, it is   take the union. This is true for all

subsets now. Because  is the whole space ok? Whole set, it is just a set theoretic thing

right now. So, for that I have to use  is empty. 

Now, how do I use this one?  is now written as union of two sets here, as union of two open

sets.   is open,   is closed,   is open so intersection is open,   is open, intersection is

open. So, actually this one gives you that  is the union of two open sets. Respectively, this

one is inside  now, because its it  is there.

And  is empty ok. So, one of them must be inside , the other one must be inside ,

ok. So, that means that  is contained in  and   is contained in . Therefore,

 is subset of . This proves that one way namely  is contained in ,

ok? The other way we have already seen, ok.
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So, similar thing we will do for the boundary operator. Take any subset of a topological space

boundary of the empty set is empty boundary of the whole space is also empty, not the whole

space , so this is a difference now ok. So, recall what is the boundary. 
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Boundary of a set is the closure of  . Throw away all the interior points from the  .

Keep that that is boundary of , ok. So, closure is the whole space. If  is  then ,

interior is also . So,  is empty set. So, that is what the first thing says here. 

Second one says that a point  is a boundary point of , if and only if every neighborhood 

of  intersects both  and , ok? Take a neighborhood of a point alright? I have to show it

intersect  both  of  them.  If  it  does  not  intersect  the  complement  means  what?  That

neighborhood is completely contained inside  ,  right? Which means that  that point is  an

interior point, but I have thrown the interior points from boundary right? 

A point is is boundary point iff it is in the complement, first of all, of the interior points. No

interior point is the boundary point alright. Similarly, this argument is similar here. If the

neighbourhood does not intersect  then it will be contained in , right? If it is contained in

, then it is in the interior of the complement right. Therefore, it is not a boundary point at

all because every point should be a closure point of  . So, this is this argument is similar

here. 



Similarly, now interchanging   and  , this says boundary of A is equal to boundary of a

complement also. So, this statement is a symmetric. So, this is also. Boundary of  is always

equal to boundary of the complement alright, ok. 

The 4th statement is boundary of  is a closed subset. That is also equally easy because what

is boundary of set? It is  which is a same thing as writing .  is open. So, its

complement  is  closed.  Then  you  are  taking  intersection  with  ,  that  is  also  closed.  So,

intersection of two closed sets is closed that is what we wanted to show, ok. 

So,  each  boundary  is  a  closed  set.  Finally,  boundary  of  A  union  B  is  contained  in

. This thing I will leave to you as an exercise because I have done so many

things you have to do something on your own to get the feeling what is going on. So, you

have to start with the ... I will just tell you how to do it. 

Take a point here. You have to show it is either here or here. What you have to do? Take a

point here which is not here then it must be here. This is what you have to do. This kind of

argument also we have used already right. So, write the full detail as an exercise. The second

part I will do it here. 
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If A intersection B is empty and both A and B are open or both are closed it is similar to our

interior part then the equality holds ok. I can leave this also an exercise, but I will do this one

so that you are not feeling that I am cheating ok? So, we am leave the first part as an exercise.

For the second part, I have to assume that A and B are disjoint. Once they are disjoint the first

thing you have to notice this one.  is empty implies  is also empty because  is

smaller subset. Similarly,   is also empty. So, this also because this is smaller subset

than A.

So, this is just set theoretic because interiors are contained in the original sets, but now this

implies we have seen this in the closure part, that the  is empty because  is an open

set. Whenever an open set does not intersect a set it does not intersect the closure that is what

we have seen. 

So, from here to here you get this is also empty, from here to here you get  is empty

because  is open. So, this is all that I can say right from the assumption that  ok. 

(Refer Slide Time: 17:46)

Now, let us start. The first thing is interior of the union contains , this we have seen

ok.  So,  boundary  of  ,  which  is  by  definition  the  ,  right.  Now,



closure of the union finite union, here only two sets, is  and this one is this is smaller

instead of this one is larger than this one.

So,  I  have  throwned  away a  larger  set,  here  I  am throwing  a  smaller  set.  So,  I  have  a

containment relation here not equality. Instead of throwing this one, we throw away ,

which is a smaller set ok. So, this is contained inside here so this is contained here because

you are taking the complementation and this is the minus, ok. Once you have here look at .

This is a subset of , ok.

And I have just shown that  does not intersect  at all. So, when I am subtracting this one

from the union, I am actually subtracting it  only from closure of A. So, it  is the  .

Similarly, when you are throwing , it is only thrown away from here, no point of this one

comes there. 

This follows because of this  relation that we have proved, but this is boundary of A and that

is boundary of B. So, what you have what A?  is contained in the , ok.

Now, now I put one more hypothesis. 

What  is  the  hypothesis?  That  A  and  B  are  both  open  or  both  closed  that  is  the  extra

hypothesis here.  In that case we have proved in the previous theorem that what we have

proved, in the last part of previous theorem, that the  is actually equal to ,

right. Remember that. Then equality holds right. So, once equality holds go back to these

steps. There are four steps here. The second step was only containment. Why? Because here

there was no equality, this was containment.

If there is an equality here I can put equality here and everything else will be done, got it. So,

one equality comes extra comes instead of this one provided both A and B are closed or both

are open. So, this containment becomes equality here and all other things are equality there

alright.
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So, now I will sum up something. Namely, open sets were the foundations for our definition

of topology right. The topology was axiomatized on depending upon open sets. There is a

parallel  theory.  As  we  have  already  observed  because  of  De Morgan  law,  you  can  just

convert all these three statements (T), (AU) and (FI). (AU) is arbitrary union, (FI) is finite

intersection. 

When you take the complements of these by De Morgan law the first statement remains as it

is. Empty set and the whole space become whole space and empty set that is all. The second

one arbitrary union becomes what arbitrary intersections, open sets become closed sets. And

then finite intersection of open sets becomes finite union of closed sets. 

So, you could have defined the same way with three  axioms for closed closed sets right, but

that would be cheating. What Kuratowski did was even more entertaining. At the time when

Bourbaki adopted a modern and modified version of the axioms for topology ok? that is the

definition that we have been working with ok? The Kuratowaki's result was only the correct

definition available. 

What I am talking about? The Kuratowski's result. However, for some reason which I do not

know  what  it  is,  they  the  Bourbaki's  rejected  Kuratowski's  approach  and  adopted  a

modification of Hausdorff's definition. If you directly take Hausdorff definition you do not



get  all  topological  spaces  as  we  consider  them  today,  because  Hausdorff  puts  an  extra

condition, which will amount to what are called Hausdorff spaces. 

So, they dropped out that  one, but instead of dropping out the whole of  Hausdorff,  just

dropped out that condition, the extra one.  So, let us take a look at this Kuratowski's approach

here. Maybe it is of some use ok. Gives you some more insight that is all, but we will not

change our  definition of topology which is based on   upon open sets only, alright.
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Let us do that. Let  be any set and  from  to  be an operator, operator is just a

self  map ok? Do not worry  about  the  new word.  Usually  this  word  operator  is  used by

function analysists, ok? So,  to  be an operator on the power set of .  is the

power set of  is a function from power set of  to itself.

Suppose  this  operator  satisfies  the  following  properties.  These  properties  are  called

Kuratowski's closure axioms ok? The first thing says that, let me read this  as closure itself

now ok? just for just for the sake that how Kuratowski read it, though we have a different

meaning for closure right now, but let me just for some time, read  of emptyset as closure of

emptyset is empty.  



Remember  this  was  a  property  we  have  proved  ok?  So,  here  it  becomes  an  axiom  of

Kuratowski. There is no topology here now. There is just this operator. A set is there and look

at the all  its  subsets,  on that there is  an operator.  So, the first  thing is  closure of   is  

Whatever you assigned to empty set is empty set ok. Whatever you are assigned to   in

general contains  is contained inside  for every  is .

If I read this as the closure what is it? Closure of  is closure of A union closure of B.

We have proved it. This is a theorem there here it is an axiom. This is true for every A, B.

 is  . This also you have proved, right? Closure of a closure is the closure itself.

So, this an axiom again here and that is it. The four axioms he has selected he can create the

entire topology that is the claim of Kuratowski, ok?

So, how do you do that? Put  instead of . Take ,  corresponds to this closure operator.

All those  inside  ok; that means what? All subsets of , such that the complement of

this one,  of the complement is equal to  itself. So, put all of them, complements of that one,

they form a topology on  and this topology has something to do with . What is that?

The the usual definition of closure A, viz.  is equal to  for all . So, this  becomes the

closure that is why it is called closure operator ok. So, when I read it first time I was really

thrilled by this one. (Refer Slide Time: 27:59)



So, let us verify this one. It is very straightforward not at all difficult. So, let us write  in-

stead of  .   is the collection of all all those   such that   equal to  . What is  ?

Rmember, it is a complement of this thing this thing that is  .   is a topology we have to

verify. Just now I have told youm by De Morgan law instead of (T) I have to verify (T’). In-

stead of (AU) I have to prove (AU’), which is nothing but (AI); that means, arbitrary intersec-

tion and instead of finite intersection I have to use finite union because under De Morgan law

intersection becomes union and so on. 

So, I have to verify these three axioms for , ok. Then  will verify (T), (AU) and (FU) and

that is why its topology. So, first part will be over. So, let us verify these two. The first (T’)

is nothing but closure of empty set is empty now that is what is already there. Therefore,

empty set is there , but  is already contained in . So,  cannot be bigger than 

because they are all subsets of . So, equality holds here. Therefore,  is in , therefore,

 is in . So, (T’) is verified ok.

If   and   are in  , what is  ? It is  . Therefore,   is   is  

because they are in . So,  is in . So, this verifies finite union. 
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Now, I have to show arbitrary intersection. Take any family of  inside . Inside  means

what?   is  equal  to   for  every  ,  then I  have to  show the  same property for  the

intersection is what I have to show ok, no problem.

First we use another property. We will derive. This is not a part of the axiom. This we are

proving as a consequence. What is that? If   is contained inside  , then   is contained

inside . Why? Write  is a larger set, write it as . If you write this way

then apply the operator  ,   is  , but   is there. So,   is contained

inside , that is all. Whatever happens to , do not care ok. So,  contained inside

 implies  is contained . Now, the intersection is contained in every . Therefore,

its closure here is contained in closure of each of them , but  is  right. So, this

closure contains here, but this equal to . So, if its it is contained inside  for every  it is

contained in the intersection.

So, closure of the intersection is contained in the intersection, but intersection is contained is

always closure because for intersection for any set its contained in its closure. So, these two

are there, so, there must be equality. These two are same right. So, there is equality. So, this

proves the this proves the first part. I will leave the second part namely  equal to , just a

very nice you know you just think about it, it is not difficult at all.

In this topology you have to prove that  equal to , for all . So, that I will leave it as an

exercise to you, ok. 
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Here are some exercises about pseudo-metric. Just to tell you what is definition ok, D1 is not

there that is all. A metric satisfies D1, D2, D3, remember D1 was the positive definiteness

that is missing. D2 is symmetry, D3 is triangle inequality, only these these two are there. All

other things are working exactly same, no problem ok. 

You can put a , namely the topology associated with these three. What are they? They

are unions of balls open balls. Open balls sets are all these things are same, same way you

have to carry on ok. So, that becomes a topology, you have to do that it show that   is a

metric if and only if in this topology , ok. Every singleton is closed so that is the first

exercise.
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This part is easy you can prove the topology and so on. So, that I am not bothered about. First

you have show this observe this one, this is also not difficult, observe this one. The second

part says put an equivalence relation   equal to  , then   is related to  . See if it is a

metric  equals  would have implied that . Since it is only a pseudo metric you do

not know whether  is equal to , that is why you want to identify them. 

So, you put a equivalence relation. You put a relation. Now, you check that is an equivalence

relation. For that you know all that you have to do is symmetry D2 you have to use, D3 or to

use, it is very easy. Look at the equivalence classes, that is my notation  here. Denote the

equivalence classes. On each equivalence class I am denoting by this  and so on.

So, I am defining a map from  into  by this formula;  equals to .

I am just putting this formula, but why this is well defined you have to check. Next you have

to show that now this  here, there is a hat here ok,  becomes a metric on , ok.  

So, the associated to a pseudo-metric space and a pseudo-metric there is a metric space ok

which is the quotient of this X because equivalence relations are there that is the that is the

gist of this one. Verify this one. That is all; all these things we have to verify. 
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So, there is a similar exercise here about when you have union of increasing sequence of

union of subsets X is countable increasing sequence of subsets.  contained in  and so

on. On each  , you have a pseudo-metric   ok. Actually sorry,  's are metric pseudo-

metrics on  on the defined on whole of , when you restrict it to , it is a metric. Only

when  are inside  implies . If you go out of that into  that relation

is not there that is all. So, on  they are all pseudo-metrics. 

Restricted to , they are all metrics. Suppose that is a case then you do this funny thing if

you typical way of summing up infinite things ok, inside a when you have infinitely many

real  number only thing you have  to  assume  that  all  the  's  are  bounded by one  single

number.

I have assumed bounded by 1, does not matter. Bounded by 1 single number it is enough.

Define  equal to this summation of . It is bounded by  summation

that is convergent so, this also convergent. So, this will be finite number. This has wonderful

properties now.

This  will become a metric on  ok and it has some wonderful properties all these thing you

have to verify. Namely, a sequence in  is Cauchy with respect to this  if and only if it is



Cauchy with respect to each  , ok. So, the topology is very closely related that is what it

means ok. So, let us meet next time.

Thank you.


