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So, last time we studied the implication signs the other way round namely a homeomorphism

does not imply similarity and similarity does not imply isometry. This was our topic. But we

covered  only one of them namely similarity does not imply isometry. So, today let us cover

the other one namely, topological equivalence does not imply similarity, homeomorphism

does not imply similarity.

Before that, I want to give you another example here of isometry, this time. Remember last

time I proved that  and  are not isometric and similarly  and  are not isometric. But

this may come to you as a surprise. When I noticed it, I was really very happy to have noticed

it, namely  and  are isometric on .

All that you have to do is inside  rotate by  and scale appropriately. If you do not know

how to do that you may say ok that is bit more complicated, ok, you write   going to

. That is a linear isomorphism ok? That is a linear isomorphism alright.



What I want to say is that it is an isometry namely you take here in the domain the  norm

and on this side take  norm, if you take the same norm this is not an isometry ok take 

norm here and  norm here. What is the  norm?  right? If both  and  are positive

what do you get? Maximum of that will be  ok. So, there is some  norm. If one of

them is positive and the other one is negative then  will be maximum. If both of them

are negative then the again this will be maximum and and so on. So, maximum norm is equal

to  always right. So, this is an isometry alright.

The smallest norm  and the largest norm whatever , they are isometric on , but can you

do it over complex number? The definition is the same ok? Think about it can you do it for

 and so, on? Think about it. I do not want to make any more comments. I want to

go to this topic now namely topological equivalence does not imply similarity.
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So, come here, start with a metric  on some non-empty set  ok. Now define another metric

which I am denoting by capital ,  is equal to   is non negative.

So,  is never , therefore, I can divide out by this.



So, the definition makes sense ok? The point is you have to verify that this is a metric. Once

again condition (D1) is obvious because this is always non-negative and if it is   then the

numerator must be ; that means,  equal to . So, that is fine. In (D2), you have to check  for

symmetry. If you interchange the  and  here this formula remains the same.

Because  is symmetric,  is also symmetric. So, (D1) and (D2) are easy. (D3) maybe a bit

difficult ok. So, for this look at this function which  is something like . So, look at

that the function. This is a familiar function to you ok? This function is a homeomorphism we

have studied earlier from  to . 

In fact, here I could have taken the domain to be  and then I must put a mod here

and here  to get into . If I do not put a mod then I would get into . I

am interested in the positive part therefore, I am taking  to  ok? So, this is not just

an arbitrary homeomorphism, it is monotonically increasing function. 

So, that you have to check ok? That fact will be used here now. The only property of this

map, what is important is that it  monotonically increasing function ok? Use this to prove that

this capital  satisfies triangle inequality ok?
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A similar thing I am doing in another example. Here  is equal to minimum of 

and . I should not take maximum then it will not be a metric ok? if  is  then minimum

will be also , and so,  is . Conversive if  is  this must the minimum of the

two and hence  is  therefore  is equal to .

Now,  symmetry is obvious here. Once again for  verifying the triangle inequality you have to

work a little bit ok. For this one, you will have to do some adhoc method, namely look at all

the points for which  is less than or equal to  that is one case. Then this 1 will not be

there at all because I am all the time taking minimum of  and . 

So, it will be always . So, all of them are less than or equal to 

then the formula for  is same thing as formula for . So, triangle inequality satisfied.

So, first case is obvious. If one of them is bigger namely  is bigger than  then you see

what happens, OK?  Irrespective of the value of . What happens?

So, you have to break the argument into subcases. As soon as  is bigger than  by the

definition of , it will be equal to  because this is bigger than , ok. So, what you will get is

something like  is less than or equal to  plus something  is less than or equal to  plus  or

something. So, you verify all these case by case. 
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The importance of these examples is that whatever metric  is both  and  are bounded by

, you see. The value never goes beyond  ok? It will exceed  ok? This is bounded by . So,

this property does not depend upon little  at all; capital  and  are always bounded by 

ok? 

So, to each metric you can associate another metric in this method there are many many

methods actually, but this has some charm. So, let us see what is that it is bounded by . Now,

if you start with   as an unbounded metric then clearly   is neither similar to   nor to  

because if something is unbounded then similarity will preserve that. 

So, that will be also unbounded right. Therefore, these two are not similar I mean  is not

similar to little , nor  is. I can use one of them to produce perhaps a counter example now.

These are not similar ok. My aim was to get a metric which will give the same topology as

well. 

So, the claim is that the topologies associated with  and  are all the same, viz.,  is

equal to  equal to  they are all the same on the underlying set  ok? Remember

here  the  underlying  set  has  not  changed  at  all.  So,  perhaps  we do not  even  need  some

function, the identity map itself will give you the homeomorphism, 

which is the same as sying that the topologies are the  same ok?
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Let us see. So, how to see that? Consider first the case namely when I take this function ok

, , that is capital . Let us first look at that ok. Now, use

the fact that again this  equal to  is a monotonically increasing function, ok?

So, it is a bijection is all that you have to observe.  by definition is  this is

what we have.  If you replace  by  what you get is capital  ok. Therefore, it follows

that  is less than  ok then  of this will be less than  because  is monotonically

increasing ok. Now,  less than  or  is capital , right.
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So, capital  is less than equal to  and vice versa is going back and forth. This implies

that every open ball in  with respect to little  here is also an open ball in  with respect to

capital . Only thing is that radius has changed from  to  ok? And vice versa. Take an

open ball of radius  in  metric, it will an open ball of radius  inverse of  in  metric ok? 

So, every open ball here is also an  ball there,  the set of open balls on there side is the same.

Of course, their radii has changed, but the entire collection is the same. Therefore, when you

take arbitrary union etc to produce the topology on one side you can do the same  on the other

side also. So, for each open set here there would be the open set there ok. The sets  and

 are the same ok. So, the topology is the same alright. 

Now look at . For  you need a different argument altogether, which is easier and hence

left to you as an exercise with the follwing remark as a hint. Let me make one of the points

very clear to you about the topology , itself ok? how the topology  is defined. Given

any metric  on  an element of  is described as a union of open balls in the metric 

right? Now let  bigger than equal to  be any fixed number ok. Note that every open ball of

radius bigger than  is also a union of open balls all of them of radius less than . If you

take ball of radius   for example, take any point  , inside that, I can find a ball of radius

something less than  with at . By taking all such open balls, the entire union is equal to the

origin ball.



Similarly, for any  bigger than  ok, I can take balls of radius smaller than  smaller and

smaller balls, I do not want to take anything bigger that , it is possible to cover the original

ball of radius , ok? Therefore, it follows that every member of  is also a union of open

balls all of them of radius less than . You do not have to take any bigger balls at all smaller

things you cannot control ok is that clear? 

Student: Sir, can you please repeat once.

Professor: Let us say for example,  is  ok? or let us say it is half, maybe  or maybe .

Can you write the entire real line as a union  of intervals of length less than half?

Student: Yes.

Professor: Can you take any open interval now, not the whole of  ok? Can you write it also

as a union of intervals of length less than half?

Student: Yes.

Professor: Yeah. So, now, question is: you take any open set not necessarily an interval, can

you do the same thing?  I do not want you to take any intervals of lenght less than . So, it is

like a measurement you know your scale is only a  inch long; you are not taking one yard

but you have to measure all the way from here to say Delhi is it possible or not? I  am asking?

Student: Yes.

Professor: Yes. That is precisely what it is happening here. Suppose your measurement is

total measurement is something , but what you have is say  foot roller. Can you measure

that smaller one it may be , it may be , you do not know right?

Student: No.



Professor: But the otherway is always possible that is the only thing that is ignored here ok.

So, take any  ok any fixed number. Less than that I can always take and all the things which

are less than that can be measured for all the balls now. See your  maybe too large say it is

, but your metric space itself is bounded by  , then is there a contradiction? I can take

anything less than  means I can take less than 1 also right, I can take half I can take one-

third ... 

So, all those smaller numbers are always there, there is no restriction there right. It should be

less than , all of them balls which are of radius less than r naught ok. Each ball which you

take must be of radius less than , never take any ball bigger than  or equal to  even. Can

you write any ball, first of all as a union of such things is a question ok? 

Student: Yes.

Professor: Once you find one balls contained inside another ball, center is the same. Center

whatever you wanted to choose, you have chosen ok original ball center is different. You take

a point and that is the center now inside that ball, you have find  an open ball inside that one

ok. After that you can take smaller smaller smaller balls. So, I want it to be smaller than .

So, you take the minimum also ok.

Student: Yes.



(Refer Slide Time: 19:06)

Yeah. So, now, you use that here all that you have to do. So, I have put  as minimum of

 and  right. Suppose I take only balls of radius less than . Then whether I take  or 

it is the same thing. Look at a ball of radius less than  in the metric . When you measure the

distance all of them will be less than , right.

Therefore,  will be also equal to . The same thing because  is a minimum of  and

, ok. So, you put this  here equal to  here then what we get is any ball here ok whatever

you have small ball you have taken they are sufficient here also and vice versa. So,  will

be equal to  ok.

In this part no ball will be of radius bigger than . Here there are. So, that is why you start

with bigger balls here it does not matter ok, but then first thing is you write them as union of

balls of radius less than . After that they are the same thing as this one alright. So, the two

topologies are the same ok.
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Now, we shall  introduce an important metric concept related to convergence of sequences.

Once again I say I am introducing, but these are all in elementary analysis ok. Copied down;

definition is copy down except the modulus is replaced by   that is all go back and check

your definitions, here is the same thing ok.

Let  be a metric space. A sequence is said to be a Cauchy sequence if for every ,

there exists a natural number   such that if I take   could be any arbitrary; I have

written like this , and  . So, both of them are bigger than equal to  that is all, you can

write it  as say   and   both bigger than equal to  , then the distance between such

points inside a sequence must be less than .

So,  that  is  the  definition  of  a  Cauchy sequence  ok.  A metric  space   is  said  to  be

complete if every Cauchy sequence in it is convergent. And elementary analysis says that

every convergent sequence is always Cauchy, but a Cauchy sequence may not be convergent

very easy examples. Take a we take a sequence, which convergent to a point and remove that

point, in the resulting  space the Cauchy sequence will remain, but the convergence point you

have removed, therefore, it is no longer convergent, ok?



That is the way you can produce Cauchy sequences in  minus any single point inside . In

side   itself, you cannot because every Cauchy sequence in   is convergent. So, this you

must have studied namely completeness of . So, I am going to use that one here. I am not

going to prove that  is complete here right now ok. So, if  is a complete metric space

then every Cauchy sequence is convergent ok.
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So, I am assuming that you know that , which is either  or  with the usual metric namely

our modulus metric, then it is complete. So, you can take ,  copies of ; .

When is a sequence convergent? or respectively Cauchy?--- if and only if each coordinate

sequence  ,  ok  I  am  writing   for  each    there  are  

coordinate sequences here each of them must be Cauchy. Then  will be Cauchy. If   is

convergent each of them will be convergent and conversely alright? So, this much we have

seen already actually. So, therefore, each  is also complete metric space, alright.
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Now, comes the point namely see our title for today's talk is the study of similarities and

isometries and so on right? Suppose you have a similarity  between . Then

a sequence   in a  is convergent or Cauchy if and only if   is convergent in  or

Cauchy  respectively.  Cauchy  implies   is  Cauchy,  convergent  imply   is

convergent. 

In fact,  if   converges to  ,  then   will  converge to  . ok? So, these things are

elementary ok. So, you should remember it like this. Similarity preserves Cauchy sequence

and completeness. You do not need the strong  hypothesis namely isometry, isometry will

also preserve because any isometry is a similarity also, ok?

So, similarity preserves these things alright. So, next question is whether homeomorphism

will preserve this one right? We are going to see that that is not the case. So, these things are

metric dependent, these notions are metric dependent, ok?
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 So, how to verify such a thing? If and only if one is one is convergence another is Cauchy

there is if and only if there are four statements here right? I mean four sub statements of one

single statement you can break it into four different thing right. Yes or no? See there is if and

only if part. So, once  convergence implies  is convergent and next  convergent

implies  is  convergent; I have to prove. 

Similarly this one Cauchy should imply that one Cauchy and vice versa right? But look at the

similarity. If  is a similarity  inverse is also similarity. Therefore, if I prove one way here

then the other way  also gets proved right?

Therefore, instead of four statement you have to prove only two statements, but even those

two statements are very much similar here. All that you have to do is for every  there exist

some  blah blah blah exactly similar things you have to do, in both cases. Therefore, I will

prove one of them. Say I will prove that   is Cauchy implies  is Cauchy ok? Just to

remind you what are this Cauchy is and so, on ok.
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So, instead of four statements I will prove one of them  Cauchy implies  Cauchy. So,

recall  that   is  a  symmetry,   is  a  similarity  implies  this  one half  condition I  am taking

namely,  is less than or equal to some positive constant ; this was the

definition. Actually there is another inequality here  is less than or equal

to this one is another part, which I do not need now. That can be used for f inverse ok, you

use this one ok?

Now,  I  am  assuming  that  this   converges  right.  So,  given   choose  a   such  that

 is less than instead of  put , that the  factor is there divided by . So, I

am assuming  is a cauchy sequence, not necessarily convergent. Suppose  is a Cauchy

sequence right? Cauchy implies this one a Cauchy.

Then that is this a condition you get; where is   is greater than or equal to  there is such a

 and  is any number, does not matter. Now put this  equal to  and  equal to  here

that   cancels out. What you get?   that is what I am going to put here

, instead of  and  equal to  right the distance is less than or

equal to the  cancels, so is less than epsilon ok. This whole thing is less than .

So, other three things also you can write down. Write it down for your practice, if I keep

doing it you will not get a practice, you have to do that.
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Now, I will take this opportunity to complete one of the little more knowledge about one of

our you know favorite example namely take  to be any set and take all functions from  to

. So, that was vector space that was a ring and so on, inside that take the set of all bounded

functions that was denoted by B. 

On B we had a metric namely  is equal to supremum of . Since each of 

and  is assumed to be bounded their difference should be also bounded. So, this supremum

make sense and we have verified that this is a metric ok. 
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So, look at this metric space, what I want to prove that is that this metric is a complete metric

space,  every Cauchy sequence here converges.  So, this you might not have seen. So, pay

attention and see that it is not at all difficult, it uses the completeness of  and the supremum

of metric  ok?  Convergence  with  supremum metric.  You can talk  about  this  as  if  it  is  a

uniform convergence  ok. So, that  is  it.  That  is  the key here ok.  So, start  with a  Cauchy

sequence   inside B,  these  are  functions  which  are  bounded,  that  is  the meaning and a

sequence is Cauchy. For each fixed  belonging to , just one  then look at the sequence

, this will be also Cauchy. Why? Because when   is Cauchy inside B, it is distance

between this distance between  and , the supremum is less than something right;  for

all  supremum is less than . So, each of them will be also less than that  that is all.

When the supremum is bounded the each point is also bounded that is what it is here. So,

each of them is a Cauchy sequence ok. So, where are the Cauchy sequences. They are inside

 because this ’s are -valued functions right. Therefore, they are convergent for each ,

you get a convergent sequence. Let us denote the limit by . So, this way I have already

cooked up a function ok.

Remember a Cauchy sequence if it is convergent any convergent sequence, there is only a

unique limit point ok. So, I can call that as  that is happening inside  ok. So, first we



claim that this  itself is bounded. See we do not know whether this function is inside B, for

that I have to show that it  is bounded, so that it is inside B ok? How do you show it is

bounded? Take any  less than .

According to this Cauchy condition there will some  such that  is less than . So,

instead of , I made it  now and I have cleverly chosen  less than , any  may do perhaps

ok does not matter ok? You have got this thing right. Now, select  one such   and let  

positive be such that  is bounded by , supremum of  is . So,  for all  is less

than equal to , ok.
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Now, what happens? Distance between   and   is less than  , right? So, you

have bounded set and then these points are away from the bounded set by another , right.

By triangle inequality,   is less than or equal to  , which is less than

.

So, here it is modulus will usual metric on mod k ok. So, this is less than . See would

have been any epsilon fixed  so it does not matter all that I wanted is bounded ok. So, this is

true for all  . So, this is a sequence which is bounded by this and it converges. What



happens when you take the limit of this as m tends to infinity? The same thing as limit of

  to . 

So,  is less than equal to . So, I have shown that whatever  is ok this this  was

chosen independent of  right, for all , this is true. Therefore, this is true for all . So,  is

bounded alright. 
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Now, we want to show that this f is the limit of the sequence f n ok? So, look at this look at

this equation, which we have already got. We can keep using this one again and again. You

do not have to write one more ok. Modulus of  is less than .  So, by

triangle inequalities will be less than  now for every  and  bigger than . Because they

are at distance from   at  , ok, for that reason I have chosen this   there. So, this

difference by triangle inequality less than . 

Now, take the limit as  tends to infinity, keep  as it is ok.  is some number here 

some other number they are all some positive integers that is all. Take the limit as  tends to

infinity, this becomes  . So, modulus of   is less than ot equal  to  . Here is

strictly less than , I have to put   less than or equal to  here. ok? 



So, this happens for every  ok for every  and every  inside . So, this is the same thing

as saying that the supremum of this is less than equal to . What that mean? Supremum means

distance between  and  ok. So, this is precisely the meaning of that this sequence  

converges to  ok. So, you do not need the first n terms here you see. 

If the sequence converges after  terms ok, you truncate that one that is enough. This is same

thing as the whole sequence converges to . 

So, we have proved that the this space B is a Banach space yeah, complete non-linear space is

a Banach space ok that is a name for that celebrating name for that one. 
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So, I want to do something more about this one, I will do later on, but right now we will stop

here and just look at sequence of of exercises here for you ok.
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So, one of the exercise here is to take a polynomial in  ok of degree , real coefficients

and one variable. Evaluate at each  going to  that gives you map from  to . You

have to show that it is a homeomorphism. From  to  , what is the homeomorphism? We

have a criterion there. 

It  must  be  continuous,  it  must  be  on-to  and  it  is  monotonically  increasing  strictly

monotonically increasing that is enough ok that is the hint ok. So, nothing here is difficult if

you think properly a little bit and use whatever little knowledge you have already ok. 
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Thank you.


