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Welcome to module 11 of Point Set Topology course. We have seen, we have introduced the

notion of Equivalences amongst metric spaces and topological spaces, Isometry, Similarity

and  Homeomorphism and  you  have  also  seen  that  isometry  implies  similarity,  similarity

implies homeomorphism.

So, today we shall discuss the topic of reversing implications here. Does homeomorphism

imply similarity, does similarity imply isometry, the guess is that answer is in the negative

and we will see. So, for producing negative answers, you have to produce examples. So, this

way the concept of all these isometry, similarity and homeomorphism may be little more

clearer to us. So, that is the idea.
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How to see that two metric spaces are non isometric? You know producing an isometry may

be very  difficult,  but  how to  say given two spaces  are non isometric? The only general

method is to find some of so called isometric invariants such that one of the space possesses

this inavariant and the other space does not ok?

But what we want is, two similar metric spaces which are not isometric. Two spaces, two

matrics should be similar. So, if your invariant is preserved under similarity also then it will

of no use. So, the invariant should be fragile enough so that when you look at similarity it is

not preserved. It is violated ok. So, such a thing we have to hunt around.

So, having said that, there are several ad hoc methods to implement the above idea depending

upon the nature of the two spaces you have in front of you ok. This method may not work,

that one may work, something which appeals to you, you may just try it out, so that is the

kind of approach we have because to begin with, you are not given the two spaces.

So, here are two similar spaces, are they isometric is the question. You do not know. So, that

for that you have to understand both the spaces properly, so this is one thing which happens

here, and the same does not in the other. This is the way you have to go around ok. So, that is

why it is an ad hoc method. You have to quite often do that.



In any case, obviously, we are more concentrating on topology. So, we will not go deeper

into  this  aspect  ok?  That  will  be  taken  up  by  differential  geometers  or  more  surely

geometrically minded people and so on ok. So, we will have only few easy example.
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So, let us look this example, the property of being bounded. We see have seen this is an

isometric invariant ok? Suppose one metric space is bounded. On the same topological space,

on the same set you may have another metric which is not bounded. Then immediately you

can say that these two are not isometric, but can they be similar also? maybe they can be

similar also. So, that is the whole idea ok? 

So, being bounded is an isometry invariant, but it is also a similarity invariant ok. So, this

will  not  work  ok.  Here  is  an  example,  easy  way,  quite  useful  concept  also.  This  is  an

isometric invariant, but not a similarity invariant. So, I am trying to cook up something like

that OK?
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So, this is the new concept that we have here which is very canonical and very geometrical in

nature. Take a metric space. Take any subset, can be empty also do not worry about that. The

diameter of that subset   is defined as follows: I have two notations here,   wherein I

have ignored the metric, but if the metric has to be mentioned when there are two different

ones then the that has to mentioned, then you have use the other notation , ok?

This is nothing but look at all  the numbers,  distance between   and   where   and   are

arbitrary points of   and take the supremum ok? This supremum may be infinite, I do not

care. If  is empty, this will be minus infinity also, makes sense. Supremum of any set of real

number if we include , it makes sense ok.

If this set is bounded above, then the real number  is finite ok? In that case, we say  is

bounded ok? including the case   equal  . That will not happen because our metric

spaces are usually non empty. If you take   to be empty,   may be  . Empty set is

bounded, that is ok no problem.



So,  finite, we say  is bounded, in that case we also say that the metric itself is bounded

ok because I have taken the entire  here ok. The metric  may not be bounded, but a subset

may be bounded, like any finite set you know is bounded ok. So, all these concepts are there

in  also, in  also. So, it is nothing new as such. So, we were just testing the concept by

just looking at a definition, supremum of  where  and  range over all points of  ok.
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So, I am making this remark here,   of emptyset is   and  is  , if and only if   is a

singleton. As soon as there are two points, the distance between them we know is positive.

So, supremum will be positive ok. Only if  is a singleton, then  is, is  ok.

So, all these things may not be very useful, but it will make the definition clear alright. Now

look at an isometry from   to   ok, then look at all the real number  

where  and  range over  and now on the other side  were  and  range over .

So, these two are two sets of real numbers. I want to say that there is a bijection between

them induced by this isometry  . viz.   from   to   ok, namely put  

equal to  and  equal to , that will give for each point ,  which

is equal to . So, the same number will come here.



So, if we can use the reverse:   inverse and you go here. So, what happens is, this set as

totally, totality on this set is equal to totality of this set, therefore, supremum over this one is

same thing as supremum over this because there sets are same, but supremum on this one is

 and here it is .

So, what we have prove is that under isometry the diameter is preserved ok. Diameter is an

isometric invariant ok.
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Now we can make this one, we can we use this one to show that similarity does not imply

isometry, not just boundedness, but more fragile thing namely diameter right?   be a

bounded metric, now start with a bounded metric so that diameter is finite, that is a definition

right.

So, put  equal to  ok. I am putting this positive because I do not want take  as an

nonempty, an empty set that is all. Now define  equal to . So, it is definition of

 again on , ok. 

For every  belongs to  we can easily check that this is also a metric. So, I am producing

another metric by just multiplying by . You could have taken any real number here nonzero



that is all instead of  . So, this   is also a metric. Moreover look at the identity map, that

defines a similarity now ok. 

So, that is the similarity relation right and there is no further function it is identity function

itself. So, identity is a similarity between  and , but the diameter with respective

to  will be exactly  ok. For each number here in the definition of this one, there will be a

twice that number in the other one here, the other one right.

So, there are two set like this. So, supremum of this one be twice the supremum of twice

supremum of this one will be twice supremum of this one. So, that is what is  here is

, ok. I could have put any number  not equal to , not equal to  of course, then also it

would have worked.

So,  this was an easy  method you see,  easy method to  see that similarity does not  imply

isometry. Only thing is I have assumed is that the metric is bounded, without which the this

finite number does not makes sense then even multiplying by infinity goes to infinity there is

no contradiction.

(Refer Slide Time: 13:06)



So, the above cheap method to get non isometric metric spaces which are similar to each

other does not work in general. Namely when the metric is unbounded. For instance look at a

vector space  ok and take any norm on it, for any positive real number  just like we did it

for  here, you can take  times the norm. You can take  times the norm alright by and call it

as norm prime.

So, you have two different matrices here  and , corresponding metric ok, then look at the

vector space  to  ok here, here I have put , here I have put , here the norm here is the

original norm, here you see the norm prime which is  times the to a norm.

Now, you take the function   equal to   ok? All that you need is   must be again as

usual not   not equal to  then it will not be much of his choice here ok. For here I should

have taken  not equal to   that is all,   equal to  , it is a same, they are the same. So, not

equal to  is obvious choice ok?

You can define like this, there is no problem, but if you want to get something more, like an

isometry when you come here, you have to put that condition ok. So, this is an isometry ok?

you have check that. So, norm of  is suppose its  here, in the second norm, the norm prime

the same vector would be  times that, but I am taking . So,  and cancels out. So, it will

be how much.

So, I am just giving an example, but that is not needed, just norm of  here will become  by

a norm,  it could be equal to that one because because there is an  here in the denominator,

 here in the numerator, that is alright ok.
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So, multiplication by some number may not produce the necessary non isometry in the case

of an entire vector space ok? In the same thing you restrict take subset   any finite subset

may do, but take something nice, namely all points is set norm of  equal to . Lets say unit

here ok and look at the two matrics on this set. I am taking the first norm here ok. So, this set

now you take the two different matrics and restrict it to this  ok.

When you restrict a metric to a subset, that is another metric space, that is what we have seen.

So,  then  the  metric  spaces  ,  and   will  not  be  isometric,  why?  Because  the

diameter of the first one is , whereas the diameter of the other one is , ok.

Clearly  the two metrics  are similar  by the  very definition,  every   inside  ,  we have

 is equal to .  will be playing the role of  and  both. So, only when you go

to the whole , it does not work, but this words for all nice things namely bounded things.
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Now, let us come to again our favorite examples namely  and , so,  ok. Start with this

elementary inequality, which says that if you take  take the maximum and

then take  power, it is less than or equal to , all added together ok?

Why? Because there are  of them. 

If maximum is one of them, say , that will be already there, here because all  of them are

there and the rest of them are all non negative. So, if you add something non negative that it

should bigger then. So, this is less than equal to this one ok. But again if you take maximum

of this ok repeat it  times that will be definitely bigger than this one. 

First you can put this  inside and then go outside they are the same. That is first you take the

maximum and then take the power  or first you take the power and then take the maximum,

they are the same. So, this is an elementary in equality. Take the  root, what do you get

here? You get the  norm; what do you get here, you get any times  norm, sorry  root

of  times  norm. In between what you get? You get the  norm ok.

Therefore you get  is less than equal to , less than equal to  root of  times , ok? So,

this shows ... what does it show? This shows that all  are similar to . That is a similarity



relation. Each  norm is trapped, between two non zero multiples of this norm . So, they

are similar to each other ok?

So, all of them are, what are these numbers ?  of course, infinity is already there.

Take anything other than that they are also similar to , similarity is an equivalence relation.

So, all the   norms on a finite dimensional vector space, (that must be  ), they are all

equivalent to each other ok. So, very simple idea here namely this inequality you have to use.
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However, we claim that   and   are non isometric. This will be our second example of

similarity not implying isometry. So, this is also important to know that   and   are not

isometric to each other,  but  they are similar ok? Since both are unbounded,  appealing to

diameter does not work. So, we need some other ad hoc method here ok. Here is one such.

Take the set  of 4 points whose coordinates are  and  ok?

, all the four are taken ok? In , see these are all elements of  R 2 So, I

am working inside  and then show that the ell 1 norm is not isometric to  norm, ok? What

is the  distance between any two elements of ? What is the  distance? That is what, 

distance you have to take the difference of the coordinates then take the sum of modulus

right? Each of them we have take modulus this minus this modulus so on. 



So, it will be always equal to two. Between any two points here ok? So, the some of the

distance whatever mod mod of that is  equal to  . If  you draw a picture it  will  be like a

diamond shaped thing right. Here these two points, like that. So, distance will be  , the  

distance ok.

Suppose there is an isometry form one space to the other. Look at the image of these four

points. You look at image inside again  but with the  metric. We get  point which are at

distance  from each other right? That is what you get. But such a thing is not possible ok.
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So, what I say is, you have  points here in  metric, which are at distance equal to  from

each other. Suppose you have an isometry  here. Then it follows that  has  points and

the   distance  between  any  two points  of   should  be  equal  to  .  Because   is  an

isometry, distance preserving.
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So, this is just false that is very easy from your school geometry. If you have  distinct points

which are equi-distance from each other, already we have an equilateral triangle right? Now,

the  fourth  point  which  is  equidistant  from  all  of  them  is  the  single  point  namely  the

orthocenter or the in-center, etc. all of them are same because it is an equilateral triangle. And

the center is at a distance much less than the length of the side. You can compute it. I do not

care it is much less than the side length . So, you cannot have a fourth point which is at a

distance equal to  from all the three points alright, alright. 

So, you see this is just another method. So, there are ways of combining various things and so

on so or distance you can an extend this one. One real aspect here is the same argument you

can use to show that  is non isometric to ell infinity also. This time if you take the  points,

all  points you have to take,  and . Take for those  points, 

distance is always   from   from even the diagonally also it will be  , ok. If  there is an

isometry to , again you get a contradiction alright.

So,  there  are  such  examples  and  so  on.  Maybe  we  will  stop  here.  When we  get  more

examples we will we will have that one.
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So, here is a comment in function analysis, that is not so difficult  and a popular theorem

which says that on a finite dimensional vector space any two norms are similar, in particular,

it  follow that all  these   norms on   are similar ok? But what we have done, we have

already proved, by taking a little bit trouble, but not too much of trouble by starting with this

inequality we have, that these  norms are all similar ok? However, this theorem says any

norm in a finite dimensional vector space, ok, will be equivalent to the Euclidian norm. 

So, they are all equivalent ok? So, this is an important result. So, we shall prove it at an

appropriate time in this course ok? as an easy consequence of some topological result that we

are going to develop, we will not spend time just to prove this theorem ok? On the way we

will prove that also alright.
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So, let us stop today for this one.

Thank you.


