Partial Differential Equations
Prof. Sivaji Ganesh
Department of Mathematics
Indian Institute of Technology — Bombay

Lecture — 2.4
First Order Partial Differential Equations
Lagrange’s Method for Quasilinear Equations
In the last lecture, we have discussed some methods to find general solutions to linear and
semilinear equations. In this lecture, we take the method one more step forward namely to
deal with Quasilinear equations. We are going to describe Lagrange’s method for finding
general solutions to Quasilinear equations.

(Refer Slide Time: 00:44)

Chapter 2: First order PDEs.
Lagrange's method for Quasilinear equations

0 Review of Lecture 2.3: General solutions to Linear and Semilinear equations

0 Quasilinear equations: Lagrange's method

We start with a brief review of the last lecture lecture 2.3, where general solutions to linear
and semilinear equations have been obtained, basically a method was described. Now, we are
going to describe in today’s class Lagrange’s method for finding general solutions to
Quasilinear equations. How the ideas from linear and semilinear can be extended to the case

of Quasilinear equations? Whether it is possible or not, we are going to see.

And which part of this method for linear and semilinear can be extended, which cannot be we
will see that as well.

(Refer Slide Time: 01:24)



paves e B

+h_ll_-li1 WL E =

i i s B Tabie e

Recall
Linear equation of 15t order
a1k ¥ ity A+ B Y  = el ¥+ iy, L]
where (1 © B2, @ boed £ O] anda® + 57 £ on ).
Semilinear equation of 15t order
alr, vy + bx vl =clr ol {sL)

where a,b € €[00, c € C'{11:), Wdhere £ © B (d = 2,3), 0 is the projection of 11: fo
s-plane, and a® + & £ Don ;.

Quasilinear equation of 1st order

aly, ¥ )ty + B o oy = ol ), (aL)

where a,b.c £ C'(k), where [y C B anda® 6% £ Don ik,

5. Sy St 11T 3o Srhal LaFeradhid Equidons

So, let us recall just to reinforce the notations, L stands for the linear equation a(z,y)uy *
Y

b(z,y)uy =c(x,y )u+d(x,y). SL stands for semilinear equation, where the left hand side is
same as that of the linear equation. That means, the manner in which the first order partial
derivatives appear is exactly the same. However, the right hand side can depend nonlinearly

onc(x,y).

Now, QL stands for Quasilinear equations. Here, the coefficients of u, and u, can depend
onualso. So, a(x,y)u, + b(z,y)u, =c (X, y)u.And hypotheses that we will be working
under is a b c are  C' functions on omega 3. Omega 3 is a subset of R’, open subset of R’.
And as usual, we require that both a and b do not vanish simultaneously at each of the points

of omega 3. So, this is Quasilinear equation.

As you observed, the first order partial derivatives, the coefficients in both L. and SL, they
depend only on x and y. Whereas, in Quasilinear equations, they depend on u as well. This is
the difference between semilinear, linear and Quasilinear equations.

(Refer Slide Time: 02:51)
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Review of Lacture 2.3

General solutions to Linear and Semilinear equations

So, let us review lecture 2.3 now, where we have obtained general solutions to linear and
semilinear equations, basically a method was described. Now, it is up to us whether we are
able to implement it or not that is silent upon but it is possible that is what the method says.
(Refer Slide Time: 03:13)

Review of Lecture 2.3

Important steps in obtaining general solutions to (L), (SL)

@ A change of coordinates from (x, ) to (¢,7), and vice versa, given by

§=pny), n=vxy) (1a)
r=0(n), y=U(En). (1b)
was introduced.
@ We chose 1 as a solution to

alx, y)ex,y) + blx, )iy, y) = 0.
@ We chose ¢ so that
eulxy) )
0.
I L

What are the important steps in obtaining general solutions? There is a change of coordinates

involved x y to £ 7. Because, in L and SL, both u, andw, appear, so we thought that we
will eliminate one of those partial derivatives. But you know, u, and u, are appear, x and
y coordinates are there, coefficients a b are given, we cannot suddenly make it 0. Then we
thought let us change coordinates and then find out if there is a possibility of finding change

of coordinates where after the transforming the PDE.



The new PDE in the new coordinates will feature only one derivative, maybe with respect to
¢ or nonly one of them. That was the idea. Therefore, there is a change of coordinates in the
background. Remember change of coordinates works in x y plane. That is in omega 2. Some
subset of omega 2, there we have both x yand & 7 coordinates. And then we choose a ¢ to

be a solution of this linear homogeneous PDE. And then we choose ¢ such that this Jacobian

oz (z,y)  oy(z,y)
Vo2, y)  Py(r,y)

(Refer Slide Time: 04:25)
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Review of Lecture 2.3
Impartant steps in oblaining general solutions to (L), (SL}
@ The LHS of (L), (5L) ransform as

alx, y) e, ¥) +blx. y)ule, y) = ALE n)weE, ).

@ The PDEs (L}, {5L) would than become QDEs, which are then salved.
Q@ After changing the variables back 1o {x,v), we gel general solutions to (L), (5L) .

& Saeg S (T Beivisty) P Ex i e Bl

Then the LHS of L and SL  which is this now  becomes
to a(x,y) ug(z,y) + b(z,y) uy(z,y) = A(§, n)we (€, n) this, it features only the
derivative with respect to ¢. And the PDEs will then become ODEs, which are then solved
that was the idea. Now, after changing the variables back to x y from & 7, we get the

solutions as functions of x and y.

(Refer Slide Time: 04:49)



How to extend the strategy to Quasilinear equations?

@ a.bare functions of x, v only played an important role in obtaining the change of
coordinates.

New difficulty in implementing the strategy for (L), (SL)

e For (QL), a, b are also functions of the variable .
o This results in nonlinear PDES for functions , 1/,

Thus, new difficulties are
o a,h depend on x,y, z unlike (L) and (SL) cases.

@ ¢, satisty nonlinear PDE unlike the linear homogeneous PDE for (L) and (SL)
cases.

Now, how to extend the strategy to Quasilinear equations? a b are functions of x y only. They
played an important role in obtaining change of coordinates. Therefore, the new difficulty in
implementing this strategy is that for Quasilinear equations, a b are also functions of the
variable set. So, this results in nonlinear PDEs for v equivalent to ¢ , because we have as we

observed, the equations are the same and only one of them is useful.

So, we can only find one function. Because, if you choose both ¢ and 1 as solutions are
the same equation, then we will get the Jacobian will be 0. So, that is the reason we choose
1 first. And then we choose ¢ phi as anybody says that the Jacobian is not 0. So, now, it is

clear the new difficulties, a b depend on x y z unlike L and SL.

This we are mentioning for the completeness sake in the sense that ¢ 1 ’s satisfy nonlinear
(05:56) useless because change of coordinates, now, had to be done in x y z coordinate not in
x y but the PDEs only x y variables. So, therefore, we do not expect the change of
coordinates can be done before in what other way we can extend the strategy. Let us discuss
that now.

(Refer Slide Time: 06:14)



Lagrange’s method: Extending ideas from (L) and (SL) cases

@ In (L) and (SL) context, v was chosen so that ¢'(x,y) = k represented a
one-parameter family of solutions to

dv  blxy)
dv alx,y)
@ U(x,y) = k represent base characterislic curves!
e For (QL), we cant determine base characteristics directly!

o For (QL), looking at characteristic curves is thus natural. Nonparametric form of
equations for chara. curves is

bty e _cond
d alvyz) dvoalxyg)

—=o Thisisthe idea af | agrange's method. But no change of variables

In L and SL, ¢ choosen such that 1 equal to k represented a one parameter family of

(charcurve.eqns.qlpde)

d b
solutions tod—y = —, this what we did right. Now, in the Quasilinear case what happens is b
X a

(xyz),a (xyz)will come. So, necessarily we have to bring in some equation for z. We will
come to that. So, 1 ( x,y )=k represent base characteristic curves,

dy _ bz,y)
dz  a(z,y)

is the equation for base characteristic curves after

eliminating the parameter t.

Therefore, for Quasilinear equations, we cannot determine base characterised directly that we

know because of the presence of z in both a and b. So, for Quasilinear equations, looking at

d b d
characteristic curves is thus natural. So, & L‘y’z), & _ M
dv  a(z,y,z) dx a(z,y,z)

this is the way
we are going to extend ideas. We are saying that for linear and semilinear looking at base
characteristic curves helped us in obtaining a general solution to L and SL. For QL, we have

to look at full characteristics.

So, nonparametric form of the equations for characteristic curves, these are after eliminating

d b d
the parameter t is g -, & - E. This is the idea of Lagrange’s method but no change
de a dr a
of variables as expected. So, let us now describe Lagrange’s method for Quasilinear
equations.

(Refer Slide Time: 07:46)
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Quasilinear equations
Lagrange's method
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(Refer Slide Time: 07:51)

Lagrange’s method: Main idea

Here without loss of generality, we assume that a(x, y,z) # 0 for all (x,y,2) € (3.

o Lagrange's idea is to consider the two-parameter family of characteristic curves
corresponding to (QL) given by

dy bxyz dr clxyz
. , (charcurve.eqns.qlpde)
a  alx,yz) de alxyz)

o Assume that the two-parameter family of characteristic curves are given by the
intersection of two families of surfaces (indexed by €, ()

(io(x9y!z) = C]: and lb(x»)hz) = CZ'

So, Lagrange’s method the main idea is this, before we present that we will assume that a is
never 0 on omega 3. So, Lagrange’s idea is to consider the 2 parameter family of

characteristic ~ curves  corresponding to  Quasilinear  equation  given by

dy _b(z,y,z) dz _ c(z,y,z)

—————~, — = ————~these are the equations of the characteristic curves.
de ~ a(z,y.2) dz  a(z,y,2)
Assume that the 2 parameter family of characteristic curves are given by intersection of 2

families of surfaces ¢(x,y,2) = Cy, and (z,y,2) = Cs.

This is the assumption. We will see an examples that we can get this. So, finding the really
the ¢, v is the most challenging part of this Lagrange’s method.
(Refer Slide Time: 08:43)



Lagrange’s method

Theorem
@ Assume that ¢(x,y,z) = C, and v(x,y,z) = C, represent characteristic curves for
(QL).
@ Vi is never parallel to Vo).
o Lot F: B* — R be an arbitrary, " function s.L.
V(&) €RY FR(Em) + Fi(ém) #0.
@ Assume that

F(so(x, v, u),0(x,3,0)) =0

defines a €' function
(x,¥) = ulx,y)

for (v,y) belonging to an open subset D of (2.

TEm 15 d gencral soiton of e quasilinear PDE (Ql

Let us take the theorem of the Lagrange’s method. Assume that
o(r,y,z) =C1, and (x,y,z) = Cs. represent characteristic curves for QL. And
Vi is never parallel to V. Although x y z which satisfy both these equations, at those
points V¢ is never parallel to V.

Let F be an arbitrary C7 function defined in R2?2, such that
V(€ m) €2, Fg (&n) + Fg(g ,m) # 0.In other words, the gradient of phi sorry gradient of F

is never 0 at every point in R?because it is domain of F okay. If you do not have R?here and
some domain of F, then we require this for every & 7 belonging to domainof F.F( £ , n )

notequalto 0,0. They do not simultaneously vanish.

Assume that F(go(x,y,u),ip(x,y,u» = (), this equation defines a C 1 function. x y
mapping to u of x y. That means this is an implicit equation for u and that can be solved. u
can be solved in terms of the other 2 variables, for x y belonging to some open subset of
omega 2. As usual we do not demand that everything should happen on omega 2 because
typically these the existence of results which deal with such assertions is implicit function

theorem that is once again a local theorem.

So, for x y belonging to an open set, we demand that F' (¢(z,y,u),¥(z,y,u)) = 0, gives
rise to a function u (x, y). If you have ¢, ¢ or C!, automatically u will become C'. That
is we are discussing now, whether you can always assert this that is implicit function
theorem, but as far as this theorem is concerned, we assume that such a thing exists. Then u is

a general solution of the Quasilinear PDE QL.



(Refer Slide Time: 11:07)

Proof of Theorem follows from the following two observations.

Observation 1:

(a,b,c) is parallelto Vg x V.

Observation 2:
d(p,) d(e,v) g, 1)
; g - Uy = = ;
d(y,7) (z,x) d(x,y)

Here

oo (g Y) Ae,v) A, y)
ATk ( 0,0 8a) U(x«,vJ>

—lLramaing to prove the ahove oheeryatinng
First observation is a b c is parallel to V¢ x V.

op.y) . Oed) _ eY)
oy,z) * Azz) 7 Ozy)

([ O(p, ) O(p, ) O(p,1)
Ve x Vi = (a@,z) ek 3(fc7y)>'

In other words, this is . This is the first component; this is the second component and this

Observation 2 is such a PDE satisfied.

RHS is the third component. If this is parallel to a b c, what does that mean? This vector is

some constant times a b c. Therefore, that let us say alphaab c.

So, you can substitute these alpha a, alpha b and alpha c; cancel alpha, what you get is a u x
plus b u y equal to c. Therefore, these 2 observations proved the theorem. So, therefore, the
proof of the theorem follows from the following 2 observations. So, what remains to prove is
these 2 observations.

(Refer Slide Time: 12:09)



Observation 1:

0 u(x.y,z) = Cy and ¢(x,v,z) = C, describe characteristic curves for (QL) means that

o Given any characteristic curve(x(1), y(1).z(1)) (parametrized by « belonging to a subinterval
Jof R),

o it lies on the surfaces p(x,y,z) = C; and y(x, y,z) = C; for some constants €', (5.

o Thatis, there exist €|, C; € R such that
P (X(1),Y(1),2(0)) = Cy, ¥ (x(1), (1), (1)) = G

o On differentiating the above equations w.r, , we have at every point (x(r), (1), (1))
on the characteristic curve

(a,b,c) V=0, (a,b,c) Vi=0.

Observation 1: what is observation 1? ab c is parallel to V¢ x V. So, ¢ =C;and

1 = C 5 describe characteristics curves for QL, these assumptions. What does it mean? It
means that given any characteristic curve x t, y t, z t parameterize by t belonging to some
interval J of R, x t, y t, z t satisfies both the equations. What are the equation?

o (x(t),y(t), z(t)) = C1, ¥ (x(t),y(t), 2(t)) = Cs, it lies on the surfaces.

That is the meaning of saying, this and this together describe characteristic curve. It means if
characteristic curve, they lie on the intersection of these 2 surfaces. So, it means that there is a
Cyand Cy such that ¢ (x(t),y(t),2(t)) = Cy, ¥ (x(t),y(t), 2(t)) = C2. Now, once we
have this, we differentiate with respect to t both these equations. And we will
(a,b,¢) -V =0, (a,b,c)-Vip =0.

(Refer Slide Time: 13:33)

Proof of Observation 1 (contd.)

°
(a,bc): Vo =0, (a,b,c) V=0,

0 Vi x Vi £ 0 (assumed)

o Thus, we conclude
(a,b,c) is parallelto Vi x Vi)

holds at every point (x(r), ¥(t). z(t)) on the characteristic curve.

We used the notations
oo [Oley) Ap¥) Apy)
LAY (f')(.v.:J "(zx) " Ol,y) )
Apt) _|Faik | ded) a(w.
yg) | 2w Bx) %ﬂ .




So, (a,b,c) - Vo =0, (a,b,c)- Vi = 0 this is what we have,
but V¢ x Vi # 0 that is what we have assumed.
Therefore, (a b ¢ )must be parallel to Vi x V.

_(O0(p, ) O(p,v) O(p, 1)
WXW"(a<y,z>’a<z,x>’a<x,y))
oow) | 5| olew) |8 5| aew) |9 5
Iy, 2) g_;f % T O(z,x) g_lzb g_zﬁ T O(z,y) % g_;f

If a vector is orthogonal to 2 vectors, let us say u dot v is 0; u dot w is zero, then u is parallel
to v cross w, if v cross w is nonzero. So, we have used that we conclude that a b c is parallel

to grad phi cross grad psi. This holds at every point x t, y t, z t on the characteristic curve.

So, this is the notations we have used, this stands for this particular data map. This is the
Jacobian of phi psi with respect to the variables y z and so on.

(Refer Slide Time: 14:27)

Observation 2:

o Let ¢ = p(x.v.z) and v := i(x,y.z) be €' functions defined on an open subset of R’,

o Let £ R? R be an arbitrary, ' function, and denote F := F(£, ).
o Assume that the equation

Fio(x, y),0(x,y,u)) =0
defines a C" function (x,y) - u(x, ) for (x,) belonging to an open subset 1 of R*.
o Differentiating the above equation w.r.t. x and y yields

Fe (e + @auy) + Fy (¥ + Yuite) =0,  and
Fe(py + pulty) + Fy (0 + Yoy) = 0,

Observation 2: What is observation 2? Observation 2 is such an equation is satisfied, this
equation is satisfied. Let ¢ 1 be C'functions. This is how we write. ¢ = ¢ (xyz); justto
denote the variables for the function ¢ . Later on we are going to substitute in place of z,
u ( x,y )but this is a function of 3 variables. So, it is definedon open subset of R® . It is very

much useful when we apply chain rule so that we do not have confusion.



So, F from R? to R be an arbitrary C' function and we denote this by Fis F F := F(&,7).
Assume that this equation F (o(z, y,u),¢(x,y,u)) = 0 defines this C' function that was
part of the assumption.

Now differentiate this equation with respect to x and y. So, if you want to differentiate this
equation with respect to x; x is present in both of them. Therefore, differentiate F with respect

to xi At this point, ¢ , ¢ which the arguments are not written.

Then differentiate this with respect to x, but here x appears here,

Fe (@o + ¢ztia) + Fy (Y + 2ug) = 0 and

Fe (py + @zuy) + Fy (Yy + Y2uy) =0

in the first coordinate and also the third coordinate. So, differentiate =~ ¢ with respect to x
plus x with respect to x is 1 that is why it is phi x, plus phi with respect to third one, the third
variable we are denoted by z. So, it will be phi z into u is there. Differentiate u with respect to
X so, you get u x. Similarly, u differentiate here also, you get F eta because the second

variable of F was called eta, so, F eta.

At this point, into derivative of psi with respect to x plus derivative of psi with respect to the
z variable into derivative of u with respect to x that will give you the first equation here.
Similarly, we get the second equation if you differentiate this with respect to y. So, here we
should have written u (x, y ) and here u (x, y ) that is the meaning here. It defines the C'
function that means, I can substitute hereu (x,y),u (X, y) And that equation will be valid
on a subset D of R

(Refer Slide Time: 16:51)
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Proof of Observation 2 (contd,)

@ The system an the last slide may be written as

"r-,-'u RCU I c":‘lr""\ f“.) = (n)
I‘.\""1 i 'F.'Jr'.' Wy ar '.'I-"lr") tF”z "\-r}‘J I

@ Since .f":'rl:f..',l:' | f-'j[;‘. w4 Oat all paints (£.47) ¢ B2, it follows that

=0

! W Tl T i1y
|
|

;,"-. bguy W+,
@ On expanding the determinant, we gel

Hew) Qle.v)  _ Hp¥)
dzx) - dlxy)

Brr) ™

ER-L RN H T bl L Tera hid Equidans



So, the system on the last slide,
<90:U + QU Y+ ¢zux> (F§> _ (O)
Py T+ PUy ¢y + 77Z1zuy Fn 0/

it is a linear system for Fxi and F eta F xi and F eta. So, you write F xi F eta is one column.

FZ(&,m) + F2(&,m) # 0 at all points (£,7) €

Yo+ P2Us VY + YUy

Py T pzuy Wy +2uy -
Then this is the first row a 1,1; first 1,1 entry; 1,2 entry; 2,1 entry; 2,2 entry. This is what we
have. Now, we have assumed that both Fxi and F eta cannot be 0 simultaneously, which
means, this system has a nontrivial solution, a nonzero solution is homogeneous system, it
has a nonzero solution, it means that the determinant of this is 0. And if we expand these

what we get.

(¢, 1) +5(9071/2) _ ()

y,2) T Bzw) T Bay)
(Refer Slide Time: 17:46)
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Remark

@ One of the hypotheses of Theoram is
Vi is never parallel to Vi

Its geometric interpretation is that for each ), O, the two surfaces ¢(xv.z) = ) and
w(x, ¥zl = G intersect ransversally, and their intersection cannet be another
surfaca.

@ Lagrange's methad provides a genaral solution implicitly by the relation

F (sl y, ), iz v 0}y =10

where F e C'E") Is arbilrary, once w1 have been determined which by ilsell is the
drawback of the method. N

il Ciorodbid EqQualods

So, one of the hypotheses of the theorem is
V is never parallel to V1.

What does that mean? What is the geometric interpretation? For each (4 (), the surfaces
o(z,y,z) = Chand ¢ (x,y,z) = Cy intersect transversally. And their intersection cannot be

another surface because normals do not have the same direction, normals are different



directions. Therefore, the tangent planes will have different directions at every point which is

common to both the surfaces ¢=C7 and &= Co.

At such a point, look at the tangent plane for ¢= ('} and tangent plane for (= Cs, they do
not coincide at all that is the assumption we aremaking.Then V¢ is never parallel to V1.
anywhere. So, Lagrange’s method provides a general solution implicitly by this relation
F(p(z,y,u),¥(z,y,u)) =0

because we assume that you can be solved for in terms of x y. In such a case, we define that

to be a general solution.

Where F is arbitrary function, we are just make sure that pand ¢ take values in the domain
of F. If we are taking F in R?, then we do not have to take even that much care. Once ¢ and
¢ have been determined, this is where the cache pages. This itself is the drawback of the
method, finding @ and ¥ .
(Refer Slide Time: 19:14)

Example 1

Using Lagrange's method, find general solution to

X + Yiby = U.
o Characteristic ODES are given by

dv dv d:

Ty 2
o On integrating “* = %, we get In|x| = In|y| + K for some constant X € R. This
= ¢*, This implies ¥ = C, with € # 0.
o Similarly on integrating I we get : = Cy, with C; # 0.

¥

Thus by Lagrange's method, general solution is given by

implies that

X
y

— WIBIB T C L s alonary.

Let us look at an example. Using Lagrange’s method, find general solutions to solution to
PDE xu, + yu, = u.
Actually this is a linear equation. Okay characteristic ODEs are given by, this is another way

of writing dx by dt equal to x, dy by dt equal to y, dz by dt equal to z or after since t is not

. .. de dy dz
present, there is another way of writing — = — = —.
x ) z



d d
So, you integrate — ,you get In|z| =1Inl|y| + K. K for some constant. And that
€ )

gives us that ‘—‘ = e, And that implies = = C; where C} is nonzero, because e power k
Y )

will never be 0 right, no matter what k is equal, k is never 0. So, T C; Similarly, an
Y

. . . dy  dz . :
integrating the other equation W _ , we could choose any combination, we just wanted
Y z

to 2 functions ¢ and .

- . T . ) . . ) de d
So, this is one solution — equal constant. It is a solution of this particular equation — = .
Y T Y

d d
Now, we will look Y _ —Z, we get similarly y by z equal to constant. So, now, what we
Y z

want is ¢ and v so, that ¢ =C'y ,¢ = (5 together represent characteristic curves. And

now, by Lagrange’s method says F (¢, ¥ )= 0. So, therefore, this is represents a general

solution.
(Refer Slide Time: 21:10)
Example 2
Using Lagrange’s method, find general solution to
Yity + Xuy = 0,
o Characteristic ODEs are given by
dv dv d:
y X 0
o Onintegrating £ = £, we get x* +* = €, with €, > 0.
o Onintegrating & = % we get : = C;, where ; € R.
Thus by Lagrange’s method, general solution is given by
F(@+y,2) =0,
where F € C'(R*) is arbitrary. A special choice of F = F(¢,n) = - g(¢) gives
Let us look at another example.  —yu, + zu, = 0.

Unfortunately, this is also linear. We will discuss some Quasilinear equation in the tutorials.

So, characteristic ODEs are give
de. dy dz
—y oz 0

.Now, on integrating this equation, we get



x? +y? = C, . C| positive. And integrating this we get  z=Cs,. Therefore, Lagrange’s

method says general solution is given F (2% 4+ y?,z) =0, by; F is arbitrary.

If I take a specific choice of F, whichis  F=F(§,n) =n — g(&),

what I getis u(x,y)=g(x? + y?) . In other words, this solution if you observe, these constant
on each circle with centre at origin 22 + 3? is constant, positive constant will give u is
constant on all circles with centre at origin. Please note that if you have integrated this

differently from what is done here, you will get F of some other 2 functions equal to 0.

And those 2 functions, these 2 functions will be related somehow. Okay, they will be
functionally dependent. I do not want to use these terms and discuss this further. But, as long
as you get =constant and ) = constant ,representing characteristic curves, capital F (¢,
1 )=0 will always represent general solution provided we can solve for z in terms of x and y.

For example, if I chose this F, of course, this is solvable u equal to g ( 2 + y* ) where g is
arbitrary function.

(Refer Slide Time: 23:12)

Summary

Summary

@ In Lecture 2.3, Linear and Semilinear equations were transformed to ODEs by a
change of variables.

Q General solutions of Linear and Semilinear were then obtained.

Q In this lecture, Lagrange's method to solve (QL) was presented.

o How ideas from simpler cases , namely (L) and (SL), extend to (QL) were looked into.

Q Two examples were presented to concretely illustrate the general algorithm for finding
general solutions fo (QL).

So, let us summarise what we did in this lecture. In lecture 2.3, linear and semilinear
equations were transformed to ODEs by a change of variables, general solutions were
obtained. In this lecture Lagrange’s method to solve QL was presented, how ideas from
simpler cases of L. and SL extend to QL were looked into. And we are presented 2 examples

to concretely illustrate the general algorithm, which is given for finding general solutions to

QL.



And we cannot do this kind of general solutions to nonlinear equations. So, beyond QL,

our theory does not go. So, to solve even such equations, we will try to solve using what is
called method of characteristics. In the next few lectures, we will be presenting the method of
characteristics and its preliminaries initially and then we use that method to solve Quasilinear
equations first and then once again, extend those ideas to solve general first order nonlinear

equations. Thank you.



