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Dirichlet BVP for Laplace Equation – Green’s Function and Poisson’s Formula 

 

Welcome, in this lecture we are going to consider divisionally boundary value problems for 

Laplace equation, we will obtain a representative formula for a solution to the division 

problem which is called Poisson's formula; it can be derived using Green's functions. And 

towards the end of the lecture, we will see certain applications of Poisson's formula.  
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Outline of this lecture is as follows we will recall certain things that we have done in lecture 

6.2 namely fundamental solutions and their properties, then we go on to define Green's 

function. And we compute these functions via what is called a method of images for a ball in 

R d when D is greater than or equal to 3 ball is a disk when it is in R 2. Then we write the 

Poisson's formula for the solution to Dirichlet boundary problem on this domains ball or disk.  

 

As an application of Poisson's formula we will prove Harnack's inequality the further 

applications have not seen equality is going to be Louiville theorem. Let us recall from 

lecture 6.2. 
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In lecture 6.2, fundamental solution for Laplace operator was defined, the fundamental 

solution for the Laplacian is the function K from R d cross R d - diagonal to R, we will define 

what is the diagonal once we see the formula for K. K of x Xi = 1 / 2 pi logarithm norm x - 

Xi if d = 2 and if d is greater than or equal to 3. The formula for K x Xi is 1 / omega d into 2 - 

d into norm x - Xi power 2 – d. As you see, when x = Xi both these functions have 

singularities. Therefore, we have to remove that so diagonal stands for the set x, Xi in R d 

cross R d such that x = Xi.  
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And the following result was establish it says that Laplacian of K of x, Xi = delta Xi, for 

every Xi fixed in R d this Laplacian is in the x coordinates Laplacian in K of x, Xi = delta z. 

What it means? We have explained that means, actually this you can think this is a notation 

for the moment, because we do not know what this is, in case you know it is exactly the same 

as what you know, if you do not know this means this. For every phi which is C infinity 



compactly supported function in R d phi of Xi is given by integral over R d of K x Xi into 

Laplacian phi of x dx.  
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Then we have stated this theorem on logarithmic potential, it says that if you have a function 

which is C 2 and has compact support in R 2, then if you define the logarithmic potential by 

this formula, this u has the property that Laplacian u = f. 
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And u Xi goes to infinity as norm Xi goes to infinity there is a precise asymptotic as it goes to 

infinity. Logarithmic potential is the only solution to Laplacian u = f having this kind of 

asymptotic behaviour.  
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Then, we have stated a theorem on Newtonian potential, this is applicable for all d greater 

than or equal to 3. So, if you have one second C 2 function with compact support and define 

the Newtonian potential by this formula. Then the following assertions can be proved 

Laplacian u = f, u goes to 0 as norm Xi goes to infinity and this is the only solution to 

Laplacian u = f which is C 2 and vanishes at infinity.  
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Remark fundamental solutions help in solving Poisson's equation Laplacian u = f in R d this 

is the essence of the theorems that we saw. So, once the fundamental solution is known, a 

single formula gives solution to Laplacian u = f. Tt is logarithmic potential if it is t = 2 it is 

Newtonian potential if d is greater than or equal to 3 for any f and suitable. Question, is there 

a function which behaves like fundamental solution does by knowing which any Dirichlet 

problem for Laplace equation can be solved?  

 



The answer is yes, it is called Green's function. Understand the difference between Green's 

function and fundamental solution. These 2 names are often blurred in the literature. So, pay 

specific attention to the difference between these 2. 
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So, definition of Green's function Green's function is defined as a solution to the boundary 

value problem Laplacian G =delta Xi in omega, G of x, Xi = 0 on boundary of omega. Since 

the fundamental solution K already satisfies Laplacian K = delta Xi in omega, we look for G 

that is a Green's function having this form that G = K - phi. Now, you know the equation for 

G you know the equation for K and also the condition for G on the boundary therefore, you 

know what is the equation phi was satisfied.  

 

So, phi solves Laplacian phi = 0 in omega and phi of x, Xi = K of x, Xi on the boundary of 

omega. So, if you want to know the Green's function, since we already know K what remains 

is to find this phi.  
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The question is does Green's function always exist? Laplacian operator is clearly the simplest 

elliptic operator that we can think of. It is a non-trivial matter to show the existence of a 

Green's function, leave alone finding explicit expressions for it for arbitrary domains omega. 

These are the 2 references I am going to give where you can find the discussion on Green's 

functions existence one is a book by P.D. Lax on functional analysis. Here you can find the 

existence of Green's functions and arbitrary domains in R 2.  

 

Then there is a paper on the existence of Green's function in proceedings of AMS by P.D. 

Lax, where he discusses Green's functions on arbitrary domains in R d. For special domains 

like a ball or upper half space, like the upper half plane and so on, it is easy to construct the 

Green's function, we will construct Green's function for a ball in R d, d greater than or equal 

to 2. So, ball when d = 2 is called disk. So, computing Green's functions we use what is called 

a method of images. 
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So, what is method of images? The method of images, it is also called method of electrostatic 

images will be used to obtain Green's functions. The method prescribes that phi of x, Xi is the 

potential due to an imaginary charge q placed at a point Xi star, which is not in the domain 

omega which is outside the domain omega and such that for every x on the boundary of 

omega, the value of phi of x, Xi coincides with the value of K x, Xi which is created by the 

unit charge at Xi that is phi x, Xi = K x, Xi for all x in boundary of omega.  
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So, Green's function for ball in R d, d is greater than or equal to 3, we will deal the case when 

d = 2 separately because of the way the formula for the fundamental division looks is 

different.  

(Refer Slide Time: 08:05) 



 
So, method of images for d is greater than or equal to 3, the potential due to a charge q at 

point Xi star which is not in omega is given by exactly the fundamental solution this is a 

charge q fundamental solution is for the charge 1. So, now it is q now, location is Xi star. 

Thus, we take phi x, Xi is equal to this. In order to determine Green's function, we need to 

find q and Xi star. So that phi x, Xi = K x, Xi for all x in boundary of omega. So, using this 

constraint we have to find both q and Xi star.  
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That is, we need to find q and Xi star such that this equation holds for every x such that norm 

x = R, because a boundary of the ball of radius R is a phi of radius R which is norm x = R. 

On simplification the above equation reduces to this because straightaway you can see that 

this cancels with this both are same factors and then you get q into norm x - Xi d - 2 = norm x 

- Xi star power d - 2 and take the power 1 / d - 2 we get this. Squaring both sides of the last 



equation and rearranging the terms will give you this. At this point of time pause the video 

compute for yourself and make sure that you are getting this equation.  
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Now, assume since the left hand side of this equation is independent of x and right hand side 

depends on x both must be constant and that constant must be 0. Please justify for yourself 

why should the constant be 0? That is this is 0 a first equation and LHs are 0 that is a second 

equation. Now, the first equation holds for every x in S of 0, R that is sphere. Therefore Xi 

star - q power 2 / d - 2 Xi that itself is 0, what it says is that division some vector in R d 

whose inner product with the x is 0 for every x on the sphere of radius R, if that happens, then 

that vector has to be 0. So, I have already given you the hint it is work it out. 
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Thus q and Xi star satisfy these 2 equations now substitute the value of Xi star from here into 

this at this point that will give us an equation like this.  
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So, on the last slide, we obtained this equation, now we need to solve for q there is no Xi star 

here only q. So, let us observe that if q = 1 then Xi star = Xi and thus Xi star belongs to the 

ball which is not allowed we want to Xi star out at the ball. Therefore q cannot be equal to 1, 

thus for Xi is nonzero, the above equation yield this how do I get this, I just see that the 

quantum quantity is q agreed, but then q power 2 / d - 2 and it is queries here q power 2 / d - 2 

whole square is precisely this. So, it is a quadratic equation in q power 2 / d - 2 think that is 

lambda and solve this quadratic equation you will get this.  

(Refer Slide Time: 11:46) 

 
So, summarizing the computations we have obtained q power 1 / d - 2 equal to this in other 

words, we have q and Xi star is given in terms of q, q is already known from here. Therefore 

we know q and Xi star and this is nothing but R square / norm Xi square into Xi. So, recall 

that phi of x, Xi we started with this. So, therefore phi of x, Xi is equal to this I have just 



substituted what is q here and I have not substituted what is Xi star the value of Xi star inside 

this Xi still retain it as Xi star. Xi star = R square / norm Xi square into Xi.  
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So, our search for Green's function proceeded by the decomposition formula G = K – phi 

therefore, K is already known, we have just found phi therefore G is known and that is given 

by this formula G of x, Xi is equal to this formula where Xi star is this.  
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Since norm x - Xi star, you get this expression compute this then you get that multiply norm 

Xi this side then you have norm x in norm x - Xi star equal to this numerator that as I goes to 

0 goes to R square. Therefore, we can define G of x, 0 to be this. Now let us turn our 

attention to finding Green's function for disk in R 2.  
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Once again method of images the potential due to a charge q at point Xi star not in omega q / 

2 pi log norm x - Xi star. But we take phi of x, Xi = q / 2 pi log norm x - Xi star as above plus 

a constant which I have written as C / 2 pi for convenience. Without this I have tried but I 

could not get anything. So, we have to add this constant then life is simpler, this idea is taken 

from all verse partial differential equations book. So, in order to determine Green's function, 

we are determined what q Xi star and C such that phi = K on the boundary of the disk.  
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So that is we need to find q, C and Xi star such that this equation is satisfied for every x such 

that norm x = R. On simplification exponentiate both sides you get this equation. So, it is not 

clear how to solve that equation for the unknown q, C and Xi star. A geometric idea helps 

here. 
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The geometry construction is as follows choose Xi star as Xi star = c Xi that means, it is 

along the line joining origin and Xi. So, in the direction of Xi in such a way that for all x as 

the norm x = R. The triangles formed by the vertices 0, x, Xi star and by the vertices 0, x, Xi 

are similar. Similarity requirements yield these equations, let us draw a circle just for 

explanation, this is our region let us say this point is Xi.  

 

So, now we take a point outside the ball with what property is that you take any point x on 

the boundary, we have this triangle this now choose Xi star, which is actually C Xi, so, such 

that this angle equals this angle, note that for both the triangles this and this this angle is 

common. Now, we have chosen Xi star such that this angle o, Xi, x is another angle o, x, Xi 

star. Therefore, by similarity what we get is that the sides are proportional. So, whatever side 

it is opposite to this angle here angle x, o, Xi or x, o, Xi star.  

 

One of them is norm x - Xi, other one is norm x - Xi star that will give us this, what is the 

side opposite to this angle o, Xi x that is x norm x and what is the side opposite to angle o, x, 

Xi star that is Xi star, so similarly you get this. So, the above equality suggests that norms Xi 

star = R square / norm Xi. So, if you observe norm Xi star into norm Xi = R square. R will be 

chosen Xi star with some property correct. So, Xi is here origin is here Xi star is here.  

 

So, product of the length of Xi star and length of Xi = R square, hence this Xi star is called 

inversion with respect to the sphere in real numbers, let us look at 0, let us say 1. And I take a 

point here, it is a half what are the inverse of half multiplicative inverses 2. So, why 2 into 1 / 



2 = 1. So, this is exactly the same thing here that is what is called Xi star is the inversion of 

Xi with respect to a S of 0, R. 
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Since norm Xi star = R square / norm Xi we get c = R square / norm Xi square and thus Xi 

star = R square / norm Xi square into Xi. Thus it follows that this equality for all x such that 

norm x = R holds with q = 1 and C is such that e power C = norms Xi / R.  
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Therefore, we have phi = 1 / 2 pi log norm x - Xi star + 1 / 2 pi log norm Xi / R which if you 

take 1 / 2 pi common it becomes this now, it is like log A + log B that means log AB. So, you 

have this and substituting the value of Xi star we get this, so this is phi of x, Xi.  
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Our search for Green's function proceeded by the decomposition formula G = K – phi now, 

we know phi also K is already known, therefore G is known. So, G has this expression given 

in this equation. Now, let us discuss Poisson's formula for the solution to Dirichlet boundary 

value problem on the ball and also on the disk in R 2.  
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So, recall from lecture 6.2 we made a remark there that this formula which we have proved it 

gives a representation of the solution u in terms of the Laplacian u and omega that is fine and 

it is boundary values dou n u and u. For Dirichlet problem only u is given and dou n u 

unknown. Therefore, the formula given above is not useful for computing the solution.  
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But there is an update now, we can use the formula and obtain an expression for the solution 

to Dirichlet boundary value problem by eliminating the term involving the normal derivative 

of u. That is what we are going to do shortly. So, Dirichlet boundary condition is u = g for x 

belongs to a boundary of omega.  
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So, this formula takes this form if Laplacian u = f you have this and dou n u unknown, u is 

known g.  
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Now, let us apply Green's identity to which is given here with u = u and v = phi of x, Xi that 

will give us an equation which involves dou n u.  
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So that is we have these 2 equations, if you add these to the term involving dou n u gets 

cancelled, because on the boundary K - phi is 0. Thus, we get a formula for u, which involves 

only g dou n u is eliminated.  
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So, the solution to Dirichlet boundary value problem is given by this and the special case 

when u is harmonic this term drops out and we have just this term. In fact, we are going to 

solve harmonic functions such that u = g on the boundary. Therefore, this is what we are 

going to find a new expression first and dou n G is what all needs to be computed. So, 

compute dou n G for d greater than equal to 3 n = 2 separately and substitute in this and see 

what the formula we get. And that formula is called Poisson's formula.  

 

If you are given Laplacian u = f, but f is not equal to 0, this will give you the solution, this 

will be the representation for the solution, we have to be very careful, this will give a solution 

means we have to prove something, but what we have done so far is if there is a solution, 

which is smooth enough, then you have this expression, that is what we are doing. So, we are 

getting an expression for solution if exists, existence is to be proved. Hopefully, the Poisson's 

formula will help us improve the existence of solutions to Dirichlet boundary value problem.  
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So, for omega equal to ball of radius R center 0, dou n g computation, please do this 

computation by yourself, I just put the value of g it is a constant so this came out. So, I had to 

find out the normal derivative of this which is nothing but gradient dot, the normal to the ball 

is along the radius therefore, x, but if you want to unit normal x / R because norm x = R, this 

will be unit normal outward normal. So, therefore, dou n is nothing but grad x of this quantity 

dot x / R. Now, it is a matter of carrying out the differentiations.  
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Please do the computations on your own I will skip the details, but I will keep the slide for 

some time so that you can note down. So, this is the final expression we get for dou n G here, 

it is simplified very nicely. In fact, even d we are going to see that same formula will come 

for dou n G.  
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So, substituting the value of dou n G into this equation will give us this formula which is 

called Poisson's formula of course we have handled d greater than equal to 3.  
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Now computing dou n G is left an exercise when d = 2 and substituting in this formula for 

dou n G we get this expression look exactly the same formula d = 2 that is it.  
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So, Poisson's formula has the same form for all d = 2 which is u Xi = R square – norm Xi 

square / omega d R integral over the sphere or circle if it is 2 dimensions of g / norm x - Xi 

power d d sigma, you may also write instead of g u itself after all it is a notation for values of 

u on the boundary. Now let us look at Harnack’s inequality. 
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So, let B of 0, R be open ball with center at 0 and having radius R in R d d greater than or 

equal to 2. And u be a harmonic function which is non negative. It takes values which are 

greater than or equal to 0 that is very important. And let u be continuous on the closed ball of 

radius R that means u is continuous up to the boundary. Then for any x in B of 0, R following 

inequalities hold so the value of u x and the value of u at the center of this ball are tied by 

these inequalities or they satisfy these inequalities.  
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Proof is very simple, it follows just from the Poisson's formula, look at this Poisson's formula 

and then triangle inequality whenever y is on the sphere of radius R that means norm y is R. 

So, norm x - y by triangle inequality is less than a norm x + norm y, but norm y is R therefore 

we have this, here norm x - y is greater than or equal to norm y - norm x, which is a 

consequence of triangle inequality. Therefore, you get this now use these inequalities in this 

denominator, you get Harnack’s inequality. 
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So, this is what we get one, these other side, we get this harnack’s inequality did not have this 

expression. What was there? Here is R power d - 2 into u of 0. Similarly, here, it was R 

power d - 2 into u of 0.  
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So, proof of harmonics inequalities complete if we knew that this quantity which appeared on 

the last slide is R power d - 2 into u of 0. The last equation may be rewritten as this, I divide 

both sides with R power d – 2 so we get this. Now, if you look at what is the left hand side, it 

is your integrating u on the sphere. And this is the surface area of the sphere you are dividing 

with that so this is the spherical average spherical mean of u or this sphere. Now, we are 

asking whether that is equal to u of 0 this follows from Poisson's formula.  
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So, recall Poisson's formula u of x = R square - norm x square / omega d times R integral 

over the sphere of radius R u of y / norm y - x power d d sigma. Therefore, u of 0 = R square 

/ omega d R, because norm x is 0 into the integral on the sphere of radius R uy / norm y 

power d d sigma because x is 0, but when y belongs to the circle norm y is R therefore, we 

get R square / omega d R power 1 + d into integral of u on the circle. Thus, we have this 



equation is exactly what we wanted to show. So, this concludes the proof of Harnack’s 

inequality.  
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Now, as a consequence of Harnack’s inequality, we are going to prove Liouville’s theorem, 

what is Liouville’s theorem? If you have a harmonic function on R d which is bounded below 

then it must be constant it means no non constant harmonic functions can be bounded below. 

Now, as a corollary we can also get that if your harmonic function is bounded above then also 

it must be constant.  
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So, let m belongs to R be such that u is greater than or equal to m for all x in R d because we 

are assuming u is a function which is bounded below. Then look at this function ux - m this 

will be harmonic and it will be non-negative therefore, Harnack’s inequalities applicable for 

this v. Therefore, for every R and for every x in B of 0, R we have these inequalities.  
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These are the inequalities coming from harnack’s inequality. So, fix an x in R d take R which 

is positive so that R bigger than norm x and pass to the limit as R goes to infinity because 

when if you want to pass the limit as R goes to infinity, whatever x you take there will be a 

time after which your R becomes bigger than norm x anyway so we have this. So, in the 

inequalities table let us pass to the limit as R goes to infinity, what we get is v of 0 less than 

or equal vx less than or equal to v of 0.  

 

Rough understanding of this is this is R power d - 2 into 1 here is also the leading term R 

power d - 1. Therefore, this limit will be 1. Similarly, this limit will be 1 as R goes to infinity. 

So, we have this now what does this mean vx = v0 since x is arbitrary, what we have shown 

is that v is a constant function. As a consequence, u is a constant function.  
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Let us summarize we have defined Green's function for Dirichlet boundary value problems. 

We have obtained Poisson's formula which is a representative formula for a solution which is 

C 2 in omega and continuous up to the boundary of omega. When omega is a ball or a disk in 

R d. It is not clear if Dirichlet boundary value problem admits a solution. It can be shown that 

Poisson's formula defines such a solution. As a consequence of Poisson's formula, we have 

established Harnack’s inequality and Liouville theorem. Thank you. 


