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Qualitative Analysis of Wave Equation 

Propagation of Waves  

 

Welcome. In this lecture, we are going to discuss about the propagation studies for the wave 

equation and with this lecture; we are going to end up discussion on wave equation.  
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Outline for this lecture is as follows. First, we discuss about propagation of confined 

disturbances. We will mention what they are later and then propagation of singularities and 

we give a few results on decay of solutions with the proof.  
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Propagation of confined disturbances: So, we are going to study propagation properties 

associated with the Cauchy problem where the wave equation is homogeneous and we have 

the Cauchy data phi and psi which is confined. It means, the functions phi and psi are 

compactly supported.  
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As Cauchy data, we choose functions phi and psi to be piecewise constant functions with 

such functions, the computations are easy and transparent. We have to bear in mind that the 

corresponding solutions given by the formulae like d’Alembert, Poisson-Kirchhoff, are to be 

interpreted as weak solutions or weaker solutions that is why I put them in quotes. Of course, 

we have introduced the notion of weak solutions in the lecture 5.6.  

 

Considering piecewise constant Cauchy data will also help us in analysing propagation of 

singularities in the Cauchy data.  
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Let us see an example dimension 1; 1 dimensional wave equation, psi is identity equal to 0 

and phi is such that it is equal to 1 on the interval 0, 1; 0 otherwise, outside the interval 0, 1 

function is 0. So, it is a discontinuous function but piecewise constant function 0 up to 0, 1, 



from 0 to 1 once again 0 from 1 to infinity that is the function phi. The support of phi is 

precisely 0, 1. So, we are assuming that psi identically equal to 0.  

 

Therefore, as we see the support of the Cauchy data is the interval 0, 1 which is a compact 

set. Support of phi is 0, 1; psi is identically equal to 0. Now, a solution to the Cauchy problem 

given by d’Alembert formula is this. Fix a t 0, we would like to find the support of u of x, t 0. 

So, we want to study the support of the solution to the wave equation at a time t = t 0.  
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Fix a t 0, then what we need is u of x, t 0. So, it depends on x – c t 0 and x + c t 0. Therefore, 

we will find out what is phi of x – ct 0 and phi of x + c t 0. We can easily see that these 

formulae hold because phi is equal to 1 whenever the argument is an interval 0, 1. The 

argument is interval 0, 1 means x is in the interval. Similarly, here this argument is an interval 

0, 1 means x is in the interval. So, note that u of x t 0 is nonzero for all those x for which x is 

in this interval or this interval.  
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Thus, for sure u of x, t 0 is 0 when x is not in the interval – ct 0, 1 + ct 0. In other words, 

support as a function x mapping to u of x, t 0 is contained in the compact interval – ct 0, 1 + 

ct 0. By the same reasoning, the support of u of x t that is x going to u of x t is contained in 

the compact interval – ct, 1 + ct. This example illustrates that if Cauchy data has compact 

support, then the solution at every time instant will also have compact support.  
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Now, let us like another example where phi is 0 but psi will be there. In the example 1, psi is 

0, In example 2, phi will be 0. Psi has compact support say 0, 1. Now, fix t in t 0, then 

d’Alembert formula gives you this as a formula for the solution. Thus, for sure, u of x t 0 = 0 

when x is not in this interval. This is – ct 0; this is 1 + ct 0. So, when x is not in this interval, 

let us say x is here, what happens?  

 



x is bigger than 1 + ct 0 that means x – ct 0 is bigger than 1. What does this mean? If I take 

the interval 0, 1, x – ct 0 is here. So, where will be x + ct 0 this side. What does this mean? 

Psi is supported in interval 0, 1 and x – ct 0, x – ct 0 which is the domain of integration is not 

intersecting 0, 1. Therefore, the integral will be 0. Similarly, if x is here because if x is not in 

this interval means x is either to the right side of 1 + ct 0 like here or to the left side of 1 – ct 

0.  

 

So, if x is like this, what does it mean? x + ct 0 is less than 0. What does that mean? x = ct 0 

is here. Where will be x – ct 0? It will be here. Once again this interval on which we are 

integrating side does not intersect with 0, 1 therefore, this we have this u of x t 0 is 0. In other 

words, the support of this function x going into u of x t 0 is contained in this compact 

interval. That is what we have drawn the diagram and shown.  
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No decay of solutions. This is another property that there is no decay when we are dealing 

with 1 dimensional wave equation. Fix x equal to x 0, what is the meaning of decay? You 

stand at a point x 0 and look at u of x 0, t as t varies as t goes to infinity. So, for t 0 bigger 

than this quantity, we have x 0 – ct 0 to be less than 0 and x 0 + ct 0 bigger than 1. Therefore, 

what will happen is that 0 and 1 are here; x 0 – ct 0 and x 0 + ct 0 will be here.  

 

If you recall the d’Alembert formula that will be an integral on this interval x 0 – c t 0, x 0 + 

ct 0. So, if t is bigger than this t 0, x 0 – ct 0, x 0 + ct 0, this interval will always contain the 

interval 0, 1 on which psi is supported. Therefore, the solution is actually 0 to 1 psi s ds that 



the integral part. So, 1 by 2 c will be there. So, we have this. This will be the solution. Let us 

see that. So, for t bigger than t 0, this is a formula that comes from the d’Alembert formula.  

 

Now, RHS is a constant because as I told you this integral is from x 0 – ct to x 0 + ct but x 0 

– ct and x 0 + ct always contains 0, 1, the moment t is bigger than or equal to t 0 where t 0 is 

equal to this or bigger than this whatever equal to we can set. So, and it is nonzero, this is not 

0. It all depends on what the integral of psi on the interval 0, 1. If it is not equal to 0, this is 

nonzero constant for all t.  

 

It means, the solution does not becomes 0 or does not decay at it stays constant. So, we are in 

a big trouble if sound waves propagate according to 1D wave equation, because of this 

reason, luckily, they do not.  
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So, d = 3. Straight away we do the example for dimension 3. I assume speed is 1, c = 1 and 

phi = 0. So, solution to the Cauchy problem, this, we have worked out in an earlier lecture to 

be this.  
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Now, consider an x with norm x = 2 and analyse what is it? It says here, I fixed an x with 

normal x = 2 and I want to study u of x t as t goes to infinity, what is the behaviour? From the 

formula on the last slide, we get u of x t = 0 for t less than 1 and for t bigger than 3. The 

function t going to u of x t is increasing the interval 1, 2; decreasing in 2, 3 and then becomes 

0 after t greater than 3.  

 

This is what we have already learned in earlier lectures that in 3 dimension solution for the 

wave equation, there is a time upto which information has not reached that is up to 1, after 



that image information has reached and after this information goes away, 0. So, this is the 

leading edge and trailing edge that is what we have seen even the pictures when we discussed 

Huygens principle, we have discussed.  

 

So, this behaviour is very different from that for d = 1, we have just seen as illustrated by 

example 2. So, where the solution become nonzero after some time and remains constant, that 

could be nonzero if integral of 0 to 1 of psi is not 0.  
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Now, d = 3, c = 1,  psi = 0, this Cauchy problem we have solved in course, maybe a weaker 

notion of solution; we got u to be like this.  
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Once again consider an x with norm x = 2, from the expression for solution, we get u is 0 of a 

t less than 1. It is function is decreasing in 1, 3; in fact, this, please verify all this assertions by 

yourself by looking at the formula and then becomes 0 for t greater than 3.  
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Now, let us discuss propagation of singularities. Singularities travel along characteristics for 

d = 1.  
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Let u be a solution to the homogeneous wave equation. Assume that for a fixed at time t 0 

that means that at a fixed time t 0, the solution u is not a C 2, sometimes we just call smooth 

function at the point x 0 t 0 that means that formula for u has a trouble at x 0 t 0. u is given by 

this expression F of x – ct + G of x + ct. u has a trouble at x 0 t 0 means F should have a 

trouble at x 0 – ct 0. Or else, G should have a trouble at x 0 + ct 0 or both.  

 

So, this means either F is not smooth at x 0 – ct 0 or G is not smooth at x 0 + ct 0. Why? 

Please justify this. If they are smooth, then you can conclude that u is smooth. Smooth, if you 

think it is continuous, it is continuous; if it is differentiable, it can be differentiable. If you 

think it is C 2, it is C 2. Now, observe that there are 2 characteristic lines which pass to the 

point x 0 t 0.  

 

Recall that there are 2 families of characteristic lines for the wave equation. One member 

each passes through this point x 0 t 0 namely x – ct = x 0 – ct 0, x + ct = x 0 + ct 0. These are 

2 characteristic lines which pass through the point x 0 t 0.  
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Now, in view of this formula for u, if F is not smooth at x 0 – ct 0, then F will not be smooth 

at all those x and t such that x – ct is equal to x 0 – ct 0. After all, it depends on whether F as 

a function of one variable, what happens to at a particular location x 0 – ct 0? So, therefore, 

whenever x – ct is equal to x 0 – ct 0, you have the same problem that is why it is not smooth. 

So, if G is not smooth at x 0 + ct 0, u will not be smooth at all points on this line x + ct = x 0 

+ ct 0 for the same reason.  

 

This shows that the singularities in solutions to wave equation are travelling only along 

characteristics. Note that the nature of singularity also does not change. That is what I said, if 

F is not continuous, u will not be continuous. If F is not differentiable, u will not be 

differentiable. If F is not C 1, u will not be C 1 and so on. So, the nature of singularity does 

not change.  
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Let us look at what happens in higher dimensions. Let u be a radial solution to the Cauchy 

problem in 3D where functions phi and psi are also radial. What do you mean by radial? It 

means that the function depend only on the distance to the origin. So, phi of x will be a 

function of norm x that there exist f and g such that phi x = f of norm x, psi x = g of norm x. 

In other words, phi and psi are constant at all points of any sphere with centre at origin. 

Since, phi and psi are functions of norm x only.  

 

In other words, it depends on the distance of x to the origin. These functions are called radial 

functions. Because if you consider a sphere with radius norm x, norm x is the radius. That is 

why these are called radial functions. Let phi belongs to C 3 of R 3 and psi belongs to C 2 of 

R 3. These are the assumptions that we need. So, that this problem will have a classical 



solution given by Poisson-Kirchhoff formula and that in turn means that f and g, they are C 3 

and C 2 on this interval 0, infinity.  
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So, we look for solutions. u of x t which are radial, that is, u of x t is looking like u tilde of 

norm x, t where u tilde is a function of R, t; R is in the interval 0, infinity and t is in 0, infinity 

once again. So, note that u tilde solves the Cauchy problem, which is given here. It is very 

easy to derive. In fact, we have already done this before, when we are trying to get solutions 

to the Cauchy problem.  

 

So, this is in fact what is called as radial Laplacian. Here, f and g denote the extensions to R 

of the given f and g because the given f and g are defined only on the closed interval 0, open 

infinity, whereas here, we need r belongs to R, because we are trying to pose a problem for r 

belongs to R and hence, we extend the given f, g to f, g. So, we still use the same notations f 

g, such that the extended functions are even functions.  

 

And of course, f is in C 3 and g is in C 2. This requires that f dash of 0 and f double dash of 0 

is 0. Similarly, g dash f of 0 equal to 0. If f and g satisfy these conditions, then we can do this 

extension as mentioned here in this point; assume these conditions.  
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Now, defining v of r, t = r into u tilde of r, t, we see that v satisfies the Cauchy problem for 

the 1D wave equation because under this change of the dependent variable, the radial 

Laplacian will simply become dou 2 v by dou r square. So, this is exactly 1 dimensional wave 

equation for v and these are the Cauchy data, v of r, 0 is r f r; dou v by dou t r, 0 is r times g 

of r.  

 

Now, using d’Alembert formula, we conclude that u tilde r, t is given by this formula. So, of 

course, the d’Alembert formula gives you v of r t, but once you know v of r t, you know what 

is u tilde r t is divide with r. Therefore, I divide with r, I get this formula for u tilde r t.  
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From now onwards, assume that psi is identical equal to 0. This means that there is no g. g  

identical equal to 0. So, the formula simplifies in this special case to this formula, u tilde r t = 



1 by 2 r into r – t into f of r – t + r + t into f of r + t. Using L’Hospital's rule and that the 

function f is even we get u tilde of 0, t equal to limit of this quantity as r goes to 0 which 

using the L’Hospital’s rule turns out to be f of t + t times f prime of t.  

 

This is yet another illustration of loss of derivatives, because we have assumed f is C 3, but 

now you have f dash so, that means it is just C 2. So, u tilde will only be C 2. u tilde of 0 t if 

it exists, it will be only a C 2 function. So, we have lost the derivatives.  
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So, the formula u tilde of 0 t equal to f of t + t times f prime of t suggests that something 

worse may happen when f is not a differentiable function. To find out what may happen, let 

us consider the Cauchy data f of r given by this formula f of r = 1 if r is less than or equal to 

1, 0 if r is bigger than 1. In other words, this Cauchy data f takes the value 1 on the closed 

unit ball with centre at 0 and outside the closed unit ball, it is 0.  

 

The Cauchy data f of r is a smooth function everywhere except when r = 1 at which the 

function is discontinuous. Since f is discontinuous at r = 1, we expect trouble for u tilde r, 1 

for r near 0. This is because f prime of t appears in the expression for u tilde of 0 t and f prime 

of 1 is not meaningful because function itself is discontinuous.  
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Indeed, u tilde of 0, 1, let us compute; it is limit r goes to 0 of u of r 1. We do not know 

whether limit exists or not, let us compute. So, what is u of r 1?  I use a formula on the 

previous slides there is a u of r, 1. Now, let us simplify this expression after the limit. So, I 

take r common, I get f of r – 1 + f of r + 1. I have written r – 1 as 1 – r because f is an even 

function. So, f of r – 1 equal to f of 1 – r.  

 

Now, what is remaining is – f of r – 1 which once again write as – f of 1 – r and + f of r + 1 

by 2 r. I have not done anything, I have just rearranged the terms in this expression to be this. 

Now, there is a r here; these is r here, I can cancel these 2 r, so I will separate these into 2 

terms. This limit can be computed as limit of this plus limit of this provided these 2 limits 

exists. Now, we see what is the limit of this and what is the limit of this separately.  

 

The first term is just 1 by 2 because when I am coming to r from the right side of 0, 1 + r is 

always bigger than 1 and f is 0, if the argument is bigger than 1, so, this term is not there. 

What I have only this term and that term f of 1 – r; 1 – r is always less than 1 and hence, this 

is always 1. So, 1 by 2. So, in fact, this quantity does not depend on r by the nature of the 

definition of the function f that we are considering.  

 

Then we have once again f of 1 + r is 0. So, I dropped that term and I take this minus sign 

here, limit r goes to 0 + f of 1 – r by 2 r; f of 1 – r is 1. I have 1. Now, I know this 1 by 2 r has 

no limit, which is a real number, but legally speaking, this is going to infinity and half minus 

infinity is like minus infinity. So, there is no limit here. So, after observing this limit equal to 

this minus this tells you that this limit exists if only if this limit exists.  



 

And we now just check this limit which is actually this limit that does not exist. So, u tilde of 

0, 1 is not only not meaningful, but also u tilde of r, 1 goes to minus infinity as r goes to 0. 

Thus, u is unbounded near the point x t = 0, 1; x = 0, t = 1.  
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Thus, not only u of x 1 is undefined at x = 0, but also u of x 1 is unbounded as x approaches 

the origin. The singularity in f which was initially confined to a 2 dimensional surface, which 

is the unit sphere gets concentrated at a point which is now the origin as time goes to 1 that is 

at the time t = 1. This is called focusing of singularities and one also says that caustics 

formula.  

 

This is in complete contrast with the nature of propagation of singularities in one space 

dimension. In one space dimension, the solution was as good or as bad as the Cauchy data.  
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Now, let us look at decay of solutions. Assume that the Cauchy data phi and psi have 

compact support. So, throughout our discussion on decay of solutions, we assume that the 

Cauchy data is having compact support. Otherwise, we do not expect such results. Solution to 

Cauchy problem in 1D is given by d’Alembert formula which is given by this formula u of x t 

equal to phi of x – ct + phi of x + ct by 2 + 1 by 2 c integral x – ct to the x + ct psi s ds.  

 

Even for a fixed x in R, large time behaviour of solutions, solutions given by this formula, is 

dominated by the term involving psi. We saw this in one of the tutorials, where we saw the 

point wise u of x t converges to a certain constant in that example. Phi never played a role 

there. So, due to this, let us assume phi = 0.  
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Now, recall from lecture 4.6 and 4.5, the Poisson-Kirchhoff formulae for the Cauchy problem 

in 2D and 3D which are given by this formula. Here, the terms involving phi and psi behave 

similarly. Due to this, we assume that phi is identically equal to 0. If it is nonzero, the 

estimates get modified by addition of new terms featuring phi and its gradient. The guarantee 

decay rate of a solution will not change.  

(Refer Slide Time: 25:31) 

 

In this lecture, we are going to study decay properties of solutions to Cauchy problems for 

homogeneous wave equation across all the 3 dimensions 1, 2 and 3. We assume phi 0 and 

Cauchy data has compact support. So, we are going to assume Cauchy data has compact 

support.  
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No decay for d = 1. We already saw this in example 2. We do not expect decay of solutions to 

one dimensional wave equation unless psi satisfies the integral over R equal to 0, in fact, 0 to 

1 in example 2, because we assumed psi supported in 0, 1. That is the content of example 2.  
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So, theorem for decay for d = 3, let psi be a compactly supported function with support in the 

ball of radius r with centre origin. Then for t positive, we have the following 2 estimates. If 

you notice here, this is a uniform estimate because this will go to 0 as t goes to infinity, as t 

goes to infinity, RHS goes to 0. So, this goes to 0 and the way, it goes to 0 does not depend 

on x at all because this is valid for all x.  

 

The right hand side does not depend on x that is why this is called a uniform decay estimate. 

The only difference between these 2 estimates is that here we have supremum of psi; here, we 



have integral of norm psi. So, whenever these 2 things are meaningful, we are assuming, it 

has compact support. So, both are meaningful. So, we have these estimates. Of course, we do 

know that u of x t is actually 0 after some time for every fixed x, but these are uniform decay 

estimates.  

(Refer Slide Time: 27:11) 

 

So, recall from lecture 5.5 that there were no sharp signal propagation for d = 2, but there is a 

decay of solution, this what we mentioned. Even though solution u of x 0, t it does not 

become 0 eventually that means there is a time after which u of x 0 t is 0 for d = 3 that does 

not happen here. Something becoming 0 eventually means, after some time, it is equal to 0 

that is the meaning of saying eventually 0 that does not happen.  

 

Nevertheless, u of x 0, t goes to 0 as t goes to infinity. In this lecture, we will stick to results 

on decay with the proof, of course, even for d = 3, we are not given proof. For each fixed x 0, 

a decay estimate on u of x 0, t that is one decay estimate. It is called point wise decay 

estimate because x 0 is fixed and we are talking about the decay of u of x 0 t. Second one is 

uniform decay estimate on u of x t. No proofs as a discussion is intended only for an exposure 

to decay properties as d varies.  
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So, decay at a fixed x that is the point wise decay. As before, psi will be compactly supported 

function. Now, in a disk of radius r centred at the origin in R 2, then for each fixed x, there is 

a constant K which appears in this inequality that depends on x such that for all t, this 

estimate holds. So, as t goes to infinity, right hand side goes to 0 and therefore, left hand side 

also. But this estimate depends on K and K depends on x. That is why it is called decay at a 

fixed x or point wise decay estimate.  
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Uniform decay estimate: same assumption as before on psi, then there exists a constant under 

t 0 such that whenever t is bigger than t 0, this estimate happens. If you are interested as t 

goes to infinity, it is okay, this goes to 0. t goes to infinity means t will become bigger than t 

0 after some time. So, estimate is valid. So, this goes to 0. Therefore, this goes to 0, so, 

uniform decay, but notice, it is a root here in the point was decay, it was 1 k by t.  



 

Now, it has become root t because of the uniform decay. So, you are having a stronger 

statement here. So, you have a weaker estimate. That is what is true in general.  
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So, let us summarize. Propagation of singularities for d = 1, the nature of singularities in the 

solution did not change from the Cauchy data at different timings. For d = 3, the nature of 

singularities in the solution could be drastically different from that of Cauchy data. This, we 

would be expected even from the Poisson-Kirchhoff formula where even if phi is a C 3 and 

psi is C 2, eventually the u, you get is only C 2.  

 

Therefore, if you fix time t and look at u of x, t 0 for example, this is not C 3. It is only C 2. 

So, there is a loss of derivatives there. So, therefore, that is the reason behind this. Similar 

results are expected for d = 2. For d = 3, we observed that nice or weak singularities like 

discontinuities in the Cauchy data propagate and result in stronger singularities in a solution 

which was found to be unbounded near the point x t =  0, 1 in that example that we saw.  

 

Decay properties are solutions of wave equation for d = 1, 2, 3, we have compared. d = 1, no 

decay; d = 3, there is a uniform decay of 1 by t type and for d = 2, we had a point wise decay 

and a uniform decay, one was like 1 by t, one was like 1 by root t. Thank you.  
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