Partial Differential Equations
Prof. Sivaji Ganesh
Department of Mathematics
Indian Institute of Technology — Bombay

Lecture — 3.2
Second Order Partial Differential Equations
Curves of Discontinuity

In this lecture, we are going to discuss about certain curves of discontinuity associated to
second order Quasilinear partial differential equations. So, we start with a brief review of the
lecture 3.1 and then we move on to discuss curves of discontinuity.
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Chapter 3: Second order PDEs.
Speclal Curves associated 1o a PDE

© Review of Lecture 3.1

© Curves of discontinuity
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Second order quasilinear PDE in two independent variables is of the form
Aty + 2bityy + cttyy + d =0, (2QL)

where a, b.¢,d are functions defined on an open subset (2, of k.

In (2QL), the dependence of each of the functions a, b.¢.d on the 5-tuple (¥, y. 1, iy i) 18
suppressed, i.e.. a stands for alx., y.u,u,.u,) €fc.




So, as you know the secondary Quasilinear equations we are denoting by 2QL and it stands
forauxx + 2 buxy+cuyy+d=0, where a, b, c, d are functions of this x, y, u,uxand uy.
So, they are defined on some subset of R 5 which is called omega 5.
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Second order linear PDE in two independent variables i of the form

alx, ¥ gt 2006 V)i e (6, v Hdx, y e, i+ x vyt glx, y) = 0.

(2L)

And a special case would be a linear equation, second order linear equation. It has the general
linear equation looks like this.

(Refer Slide Time: 01:09)
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Review of Lecture 3.1

So, let us start with the review of the previous lecture.
(Refer Slide Time: 01:16)
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The following Cauchy problem was considered in Lecture 3.1

Find a solution to

@ity + 2bug, + ity ~d = 0, (2QL)
am ulf(s). g(s)) = his),
Oz i ¢
~Af(s), g(s5)) = xls)
an’
for s belonging to a subinterval of /. Here a regular curve with the parametrization

[, X=1{5),) L'ijfofx‘ [

is given, along with the Cauchy data h, y along I's.

We have considered the following Cauchy problem in the lecture 3.1. What is that? Find a
solution to the second order Quasilinear equation satisfying u of fs, g s =h's. And the normal
derivative of u at a point f s, g s is Ghi s. What is f s, g s? It is a curve parametrically given in
a plane gamma 2 and the curve is a regular curve. That means, f dash and g dash do not

vanish simultaneously.

So, along this curve we are specifying the value of u as h and the normal derivative of u as
ehi. So, these functions h, Bhi are given. So, this is often called Cauchy data along gamma 2.
(Refer Slide Time: 02:09)
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We observed that

o First order derivatives of i at points of I'; can be computed using the
Cauchy data.

o |, is aregular curve is all that was used.

e Second order derivatives of u at points of I', can be computed using the
Cauchy data and the PDE (2QL) whenever Als) # (| where

AN F A1 AN "y‘w‘ YRAY.J !y YT RLY M /LY
Als) :=el¢{s)) (£ (s))" = 2b(C(s)) (5)g'(s) = allls)) (g(s)),

C(s) = (f(s). g(s). his), pls). qls)).
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So, we observed that the first order derivatives of u at points of gamma 2 can be computed
using the Cauchy data. For that what all was needed is that the curve gamma 2 is a regular

curve. That was good enough. Then we also tried to compute second order partial derivatives



of u again along the curve gamma 2. It can be computed using Cauchy data and now, we have

to involve the partial differential equation as well.

So, the second order Quasilinear equation using these 2 we can solve, but one more condition
was to be met. So, that was delta of s is not = 0. What is delta of s? It is this expressionj ¢ f
dash square - 2 b f dash g dash + a g dash square. We know what f and g are. These are the
functions which describe the curve gamma 2 parametrically. Then what is zeta s? It isa 5
tuple whichisfs,gs, hs,ps,gs.

We have already solved for p s and g s using €hi and h. Therefore, this makes sense and we
can ask this condition. If this is nonzero delta s is not 0, then we can compute second order
derivatives. And we have also shown that higher order derivatives can also be computed no
further extra conditions are needed.

(Refer Slide Time: 03:39)
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The cﬁrves ['; for which A(s) = 0 holds are Special to the PDE

How to find them?
Assume that [ ; is the graph of a function. For example,
X =y
Here
Fyox = fls) = pls)vegly) =8

The equation

e(C(5)) (' ()" = 2b(C(s))f ()€ () + all(s)) (¢ (5))" = 0

where ((8) == (f(s), gls), his), p(s), q(s)) reduces to

Now, we would like to understand this condition in more detail. What is this curve? What is
this? Where delta s identically = 0, how the curve looks like? So, let us assume to start with
that the gamma 2 that we consider is not parametrically considered defined. But let us say it

is a graph of a function of the type x = phi y. It is the graph of a function of the variable y. x =

phiy.

Then what happens to gamma 2? x = f s that will be phi s. y = g s which is s. Why we
parameterize s, then x becomes phi s. So, these are parametric representation. And s belongs

to that side where y belongs to. Wherever this function phi is given the domain s belongs to



the same domain, we are not writing that right now. Now, what will happen to this equation?

Now, we need to substitute whatish's, p s, and g s.

h s is still general, p s and g s are to be determined from h s and ghi s. So, these are still
unknown, but what is known is f dash; f dash square is phi dash square, g dash is 1. So, this
equation becomes this equation. Of course if you want to know what function satisfy this
condition, we need to still know this h, p and g. That is a problem with this equation, because
the equation is Quasilinear equation.

So, for a Quasilinear equation, if you are interested in this question, then you must be given a
solution of the equation then you can ask what is that curve which will have this property?
That can be now determined because solution is given. Therefore, you know what is p and q?
So, it makes sense. On the other hand if the equation is actually linear, this a, b, ¢ s are not

functions of zeta s at all. Zeta s is a 5 tuple.

They are simply functions of the first 2 variables f s and g s. And what is f s and g s? That is
phi s and s. So, therefore, you know explicitly ¢, b and a only in terms of phi. So, it will be a
differential equation for phi. So, it further reduces in the case of a second order linear
equation to a simpler equation. For a Quasilinear equation however, we need to be given a

particular solution for which we can ask.

What are the curves x = phi y along which there is a problem in finding higher order
derivatives.
(Refer Slide Time: 06:15)
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The curves I'; for which A(s) = 0 holds are Special to the PDE

When the equation (2QL) is linear, the equation
e(C(s)) (&'(8))” = 2b(C(5))'(s) +alC(s)) =0
may be written as the ODE

dy ) dy
cleliy),y) (y) 2b((y), ¥)— (v} + aloly),v) =0

as a,h, ¢ are functions of {x, ) only.

A QFerld Equan's

Problem in the sense we are unablej BUF scheme of things fail. Our scheme to compute the
second order derivatives onwards fails because delta s is O there. So, as we saw these are
special to the PDE because the definition of course involves the equation. For the linear
equation, this gets simplified to this. x = phi y. So, this is a differential equation, nonlinear,

first order, degree 2, nonlinear and coefficients will involve only 2 variables now.

Because we have a linear equation. So, one can hope to solve this for phi then we would have
got the curve x = phi y where phi is the solution of this ODE is a curve along which delta s is
identically = 0. Or there are troubles in solving for higher order derivatives. In other words,
along these curves, there is some problem to determine higher order derivatives of the
solution or of a possible solution.

(Refer Slide Time: 07:26)
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o The curves ['; for which A(s) = 0 holds are Special to the
PDE as PDE also plays a role in their definition.

o The same curves appear in a different context as well.

o For piecewise smooth solutions of (2QL), the curves of discontinuity
also satisfy Als) = 0.




So, even if you no solution, there is a problem to determine that because of delta has been 0.
Now, the curve gamma 2 for which delta s identically = 0 holds are special to the PDE as
PDE also plays a role in their definition apart from gamma to itself. The same curves appear
in a different context also. So, for piecewise smooth solutions of the second order Quasilinear
equations, the curves of discontinuity also satisfies delta s identically = 0.

(Refer Slide Time: 08:05)
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Curves of discontinuity
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Theorem: Hypotheses and Notations

Let ©2 C K* be an open and connected set, and + be a curve in K7 that divides (2 into two
parts such that 2, ~ is composed of two disjoint regions £, and @,

So, let us, we are going to state a result. In the form of a result it will be easier to remember.
So, hypothesis and notationsi Suppose you have an open and connected set in R 2 and take a
curve in R 2, gamma that divides omega into 2 parts. So, that means that we have this. Let us
say this is omega. And we have a curve gamma, which cuts this into 2 pieces, one is omega 1

other one is omega 2.



So, what is omega now? Omega consists of omega 1, omega 2 and this curve gamma, on the
part of the curve gamma. We are going to assume that the curve gamma is given by x = phi y.
We have already seen its interpretation in lecture 3.1. Why do we consider x = phi y? Once
again we will give at the end of this result.

(Refer Slide Time: 09:14)
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Theorem: Hypotheses and Notations

o Givenv'"{x,¥) € C[8,) and v*'(x.y) € C({), define

o Let v denote the jump in the values of » across - defined by

Wiy = vy vy for (xy) €,
s W

So, given v 1 in C of omega 1 bar, which means, that you are given a function v 1 here,
which is continuous on omega 1. Of course, omega 1 open set, but it should be continuous
upto the boundary of omega 1. In other words, what actually we want is its meaning on this
curve. So, therefore, v 1 on the curve gamma makes sense. Similarly, v 2 is in C of omega 2

bar means that the values of v 2 on the curve gamma makes sense.

It will guarantee that apart from of course are on this boundary also they make sense because
it is continuous up to the closure of the domains. In this case omega 1, in this case omega 2.
If such functions are given, we can look at the value of v 2 on gamma and v 1 on gamma, it
makes sense, meaningful. Therefore, we can look at the difference. Let us see. Let us define a

function v, inomega 1 itisv 1, inomega 2 itisv 2.

Let box of v denote the jJump in the values of v across gamma. That means, the definition is
take a point x, y, take a point x, y on gamma 1 in omega 1, this is where v 1 is defined, this is
where v 2 is defined. We have seen v 2 of x, y makes sense, when X, y is in gamma. Let us
call this part as a gamma may not be the outside part. v 2 of x, y makes sense, v 1 of x, y

makes sense because v 1 is also continuous upto the boundary.



There in particular i§ values in omega 1 make sense. And we can consider the difference.
You could have even taken v 1 — v 2 there is no problem and we are considering v 2 — v 1.
So, this is called jump in the function v. That means you have a function v defined on omega
1. Here we have a function here we have a function which is continuous, so that the values
make sense along this curve gamma. Then you look at the jump in v asv 2 — v 1 at points of
gamma.

(Refer Slide Time: 11:36)
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Theorem: Hypotheses and Notations

o Lelit. iy, it, be continuous on 12, and Ihe restrictions of i 1o 1 belong to C2(T1) for

=12

o Let begivenby ~ :x = i), where 2 is a continuously differentiable
function.

Let u, u x and u y be continuous on omega and the restrictions of u to omega i, they are C 2
functions because we want them to be solutions to the PDE. So, that is why the C 2 ness and
we want omega i bar because we are going to consider the jumps in second order derivatives.
First of all derivatives should be meaningful on the curve gamma. So, if | assume u is C 2 of
omega 1 bar, we may put 1 on the head, u 1 is C 2 of omega 1 bar. It means that second order
derivatives of u are defined on gamma because they are continuous in omega 1 bar. That is
the reason why we have this condition. So, let gamma be given by x = phi y where phiisa C
1 function.

(Refer Slide Time: 12:39)
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Theorem: Conclusion 1
@ The jumps .., (. . [u,] across - are not independent of one another.
Denoting Aly) = uyl{(y), ¥}, we have
[ (2(v), ) = =Aly) (v,
it (000), %) = Ay) (' ()"

at each point (z{v), v on the curve ~.
Observe

Ay)=0 = |upl=1lug]=0

Now the jumps in u xx, u Xy and u yy are not independent of one another. It means they are
interrelated. To start with it looks like yes, u xx is a jump in second order u xx derivative, this
is jump in xy derivative} this is jump in yy derivative. Why should they be connected? So, let

us denote lambda y as a jump in u xx at a point on gamma. A point on gamma looks like phi

Y, y.

So, then this is the result. Jump in u Xy is in terms of lambda y and phi dash. And jump in u
yy is lambda into phi dash square? We are going to prove this. So, they are related. Observe
that if lambda y is 0 what will happen? Lambda y is 0 means the hand sides are 0 here, which
means jump in u Xy and u yy are zeroes. That means, if jump in u xx is 0, then jump in u xy
as well as uyy are 0.
(Refer Slide Time: 14:31)
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Proof of Conclusion 1

o The restrictions of a function defined on 2 to the regions €2, and (2, are denoted by
adding superscripts (1) and (2) respectively.

o *
| b



Let us prove the conclusion 1. The restrictions of a function defined on omega to the region's
omega one omega 2 are denoted using superscripts. That is, we had this as the omega and we
had a curve which is making it into 2 parts omega 1 and omega 2. And suppose we have a
function u defined on omega or any function u, u x, u 'y we denote the restriction of u to

omega 1 by u 1 and here by u 2. So, u i is u restricted to omega i.

Proof of Conclusion 1

o The restrictions of a function definad on 2 to the regions ¢!, and (2, are denoted by
adding superscripts (1) and (2) respectively.

@ Since w.u,, u, are assumed to be continuous on {2, these functions are continuous
across + also.

o As a consequence, we have along the curve 4

(2a) [u] = u"":[.._:[\'}.y} - u"‘lﬂr‘[,vl, y) =0

(2b) b= u{‘:'{.;()'),‘\ﬂl -1, (¢(¥),y) =0

( (N7 2.8 .\ 4NN
(2¢) ] = (03}, ¥) W io(y),y) =0

Since U, U'X, Uy are assumed to be continuous on omega, these functions are continuous

across gamma also. In other words, there are no jumps across gamma. So, jump inuisu2-u

1, phiy, y is a point on the gamma. Similarly, the jJump in u x defined by u x 2 —u x 1 that is

also 0. Jump in u'y is also 0. SoTon differentiatingthe equations 2b and 2¢, ihe last'2

(Refer Slide Time: 15:22)



¢ On differentiating the equations (2b) and (2c) w.rt. y,

o In terms of jumps, the above equations take the form

Uy (LY V)2 LY) [ty

(sly

iy (¥

o ane foy
\ ), ¥)e'(y) 4

Ul ald whafo b 217 af
(e (0.0 1) = ! (0} 0 () + 1 (el

2, X XN NN N TEA 2/, af
Hi,“.,i'l\'l'-,".'r"-” u;_‘,l,;u.\n.y’..‘;-..‘\.“ uf"{-,:'.\.

Jy) =0,

[““'u_ : Y'.l‘r."

o Conclusion 1 of Theorem follows from the last two equations.

Vs .

T

we get
1.y u.‘ (wivhy) =0

Ly) = (plyl i =0

),y) =0.

So, we differentiate the last 2 equations on the previous slide. We get this by differentiating

the first equation and this by differentiating the second equation. Now, in terms of the jumps,

this equation is nothing but jump in u xx, into phi dash + jump in u xy = 0. That is the first

equation. And the second equation is jump in u xy, which is this into phi dash and jump in u

yy = 0. So conclusion 1 of the theorem follows from the last 2 equations, because we called u

XX jump as lambda then jump in u xy is - lambda phi dash.

Therefore jump in to u xy is - lambda phi dash that wi
dash into phi dash. That is a conclusion 1.
(Refer Slide Time: 16:26)
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Theorem: Conclusion 2
© Hypotheses

o Lot vbesuch that Ay) # 0,

o ' and o' solve the quasiinear aquation {2QL) in the regions () and (1, raspectively.

Conclusion
Denoting by {y) == (wiy), ¥ ulwiyl vl aclwly], vl (2], y)). the following
equation holds:
. PO |12 s
al((y)) = 2b(C(y)) == + c[{(y])
dy

It we assume that Alv) # 0 for all v, then the above equalions holds for all v,
This equation is same as A5} = (.

Il give you jump in u yy is - lambda phi

de\?

' ) =1
dy

(

\

Let us look at the conclusion 2 of the theorem. For that we need to assume the hypotheses are

uland u 2 50IVes the Quasilinear equations in

the region's omega 1 and omega 2



respectively. Let y be such that lambda y is not = 0. Recall lambda is the jump in u xx at the
point phi y, y. Conclusion: Denoting by zeta y = this quantity phiy, y, u at the point phiy, v,
u X at the point phiy, y, uy at the point phiy, y.

Recall the point phi y, y means x = phi y. This is how a point on gamma looks like. The
following equation holds. We are going to show this equation holds. Whenever lambda y is
not = 0 at that point this equation holds. So, if you assume lambda y is not = 0 at all the
points, then the equation holds for all y. Then this equation is same as delta s identically = 0.
(Refer Slide Time: 17:36)

7 OO BT R0 | e AL L @ :J

- e e [y -

Proof of Conclusion 2

We now assume that «'*' and »'*' are solutions of the quasilinear second order PDE

oy 0 (N
. oAy oty
M = Wity =+ Cleyy + A0V, 000,00y ) =0 =

in the regions £}, and (2 respectively. That is,

» ] i) i ¢ () L0 i)y '
0 awy + 2wy +enyy +dlxyon® g w)
— — —— v
e ‘Ll“‘-

A~

(D)
)\ ' YW U0
On sublracting one of the two equalions in from the other, weget 4" i

y %)

0= alu,| + 2bluy| + ¢, along
on e i

Proof is very simple we are going to assume that u 1 and u 2 are solutions. Therefore, we can
write down this equation same omega 1 and omega 2 with the appropriate superscripts. So,
we have this. Now, we have 2 equations, we have to subtract one from the other. And we
have assumed that there are no jumps in u, u X and u y. Therefore, the coefficients a, b, c, d

they all are like this. They are functions of X, y, u, u x, uy. There is no jump in them.

So, this a will come out to be a. So, only u pick up the jump in u xx. So, 2b will remain as it
is because the curve it is a continuous function. And it is the same in both. Therefore along
gamma, what | mean by saying both is this. You have an expression for let us say here a x y,
ulof course of X,y,ux1x Yy, uylx,y, we have this. And here what we have is exactly

same, but with 2.

Now, on this curve, if X, y is here then both are same. Because there is no jump u x 2 is same

as u x 1, when x, y is on this curve gamma. That is why when you subtract; they come out as



they are and the d term gets cancelled because the same in both of them when you are looking
at points of gamma. So, you pick up only the jumps. Jumps in u Xx, jump in u xy, jump in u
yy they come here. So, we have this.

(Refer Slide Time: 19:33)
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Using the Conclusion 1 of Theorem in the last equation, we get

0 alCOIAY) = 2b(¢OIAIE ) + elCOA) [ (y '|‘l"
it i ian @ an (d)
= ANFLaCy)) = 200C1Y)) FC(CLY))
O ! /.{\‘ (L .‘ ({\' )
Assuming that Ay) # (1 along +, we get

\1
A £
). o (e
all(y)) = 2bic(y))— + r'u_l)’l;| —'| (.
av \dy )

This equation is the same as Als) = 0for s € 7, when x = o(y).

So, using the conclusion 1 of theorem in the last equation, we get 0 = a of zetay lambda y - 2
b of zeta y lambda y Phi dash + ¢ of zeta y lambda y Phi dash y square. So, if you take
lambda y common, what you get is this, a - 2 b phi dash + ¢ phi y squared. Assuming that
lambda y is not = 0 along gamma, we get this, the one in the brackets must be 0. If lambda y

is not = 0 for all y, then the one in the parenthesis must be 0.

So, we get this differential equation and this equation is the same as delta = 0 for s in I. Same
equation when x = phi y. So, we have assumed that the curve is of the form x = phi y.
(Refer Slide Time: 20:27)
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Theorem: Conclusion 3
Q Hypotheses
o ') and u'*' solve the linear equation (2L] in the regions {1, and 12; respectively
o« pessasses third order derivativas and have jump discontinuibes across +.
o Lot vbesuchthat Afy) # 0
Conclusion

Then A sailisfies the following ODE

: ; IO SO | | fa ' )
0=2(b-co" )X + @i =20+ () +d—ep —cy" ) A

Observeif b ¢’ 7 0,a.b,c.p smooth, then

The conclusion 3 of the theorem is as follows: Hypothesis, assume u 1 and u 2 solve the
linear equation in the regions omega 1 and omega 2 respectively. The linear equation and u
possesses third order partial derivatives that is required for stating this conclusion and have
jump discontinuities across gamma. Let y be such that lambda y is not = 0 then lambda
satisfies the following ODE.

0 =2 into b - ¢ phi dash into lambda dash + this quantity into lambda. So, this is a linear ODE
with variable coefficients because they depend on y. This depends ony. So, it is a linear ODE
with variable coefficients. Of course, if b - ¢ phi dash = 0, then this will be a singular ODE
otherwise, it is a linear ODE. Now, observe that if b - ¢ phi dash is not =0 and a, b, c, phi are
smooth functions, then lambda y = 0 at isolated points implies that lambda y is identically =
0.

Let us understand this carefully. If lambda y = 0 at some point this ODE may not hold, but
we are here hypotheses lambda y = 0 at isolated points. That means, the points where lambda
y = 0 can be reached by the points where lambda y is not = 0 at which the ODE holds. This
ODE makes sense, because whenever lambda is not 0 at some point, the body happens. The
lambda satisfies this ODE.

And you see this is an equality as people say equality is a closed condition. Therefore, it
follows that even if lambda y = 0 at isolated points, this ODE continues to hold. And if we

are assuming all these functions are smooth and this is nonzero, then it turns out that the



quantity in these brackets and the quantity in these brackets are smooth functions and they are

locally Lipschitz functions.

Then, we can apply uniqueness theorems for the initial value problems and conclude that
lambday is identically = 0.
(Refer Slide Time: 23:02)
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Proof of Conclusion 3

Since A(y) = [ (wly). y), we have

/4 L 1y
My} = i [0y} = e (2(3). )

Dilferentiating on both sides of the above equation w.r.l, v gives

T I S G S SO I, O 1\ T S
10 =600, 9)9/0) -0 0 ) )0 -). )
That s,

dA, . g g

p () = [ (200), )" () + [ters) (2(3), ¥)-

G

So, lambda y by definition is jump in u xx which is this. Differentiate both sides of this
equation you get lambda dash with respect to yj therefore you differentiate this with respect
to x you get you triple x. But phi is there therefore phi dash and from here you get u triple x
into phi dash. Now, differentiate u xx with respect to y variable you get this. Similarly, this.
You get this. Therefore, we can express d lambda by d y as jump in u triple x into phi dash +
jump in u xxy.

(Refer Slide Time: 23:46)



Similarly, we get

dlu,, . . A

%l ¥) = [ (00¥). 1) () + e (203, 3)
In view of the relation [sty, = — A", the last equation becomes

d

— (=X} = [ |20}, ¥)' () + [ (2000, ).

dy

Now, similarly, we can also get derivative of u xy, you write the equation for u xy jump,
differentiate with respect to y, you will end up with this relation. Now, we know that u xy
jump is - lambda times phi dash. That is a conclusion 1. Therefore, this equation I can write it
as this.

(Refer Slide Time: 24:07)
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Ifu" {i = 1.2) solves the linear equation in (3) the domain £);, then we also have
aty, 2y | ey | du" | c.'(f,"“ T A | R e )

First differentiate each of the two equations in {3) w.r.t. x, and then subtract one from
another to get

lityre| + 200ty + Clitay] + dtte] + €[itey] + Anliter + 2byfut] + €l =0

Now, we are going to use u i solve the linear equation in the domain omega i. So, we have
these 2 equations one in omega 1, one in omega 2. In gamma we will consider because we are
going to take jumps. So, firstly is to differentiate this with respect to x because we are
interested in third order derivatives, differentiate with respect to x, then subtract one from
another, we get this expression.

(Refer Slide Time: 24:34)



ARE e (VEw -

¥ iy R e
o =t [P S e G e W et e hole Mt

Using tha Conclusion 1 of Thaorem in the last equation, we get
ltica] + 2b{ten] + Cling] +dX = eAg + A = A + .0 (&) =0,

Thus we have the following three equalions relating jumps in 3rd order derivalives.

X, b y 1
#U) U] (2 (%), ¥07 () 4 et (2050, ¥)
d, \ p vy ”
— (=X) = [t (23). 50 (V) = [t (030, 3)
dy ot it
A
ity + 2D(1tgy| | luin] + AN - X ah - 2N e ()7 0

Eliminating the jumps in the third order derivalives of 1 across ~, and using the relation
a-2bg + ¢’y =0, we getthe ODE in Conclusion 3. Freveise |

Now, once again use the conclusion 1 of the theorem which expressed basically the relations
of jump in u xx, u xy and u yy in terms of lambda which is actually jump in u xx. So, we get
this relation. So, we have 3 equations, this, this the one we just Obtained this. Now
eliminating the jumps in the third order derivatives of u across gamma and using this relation
that a — 20'phi dash + Ephi dash square is 0. That is the equation phi has to satisfy.

Even for Quasilinear equation, therefore, for linear equation also, so this equation is satisfied.
So, how do we eliminate it that is what you have to look at. So, we want to remove these
conditions, we have 3 relations in them, maybe solve for themj that is what it is. And
substitute and we get the ODE in conclusion 3. So this is left as exercise to you. This is a
simple algebra algebraic exercise.

(Refer Slide Time: 25:46)
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Intensity of jumps
Q We may interpret Ay .= [u.)ipiy), ) a8 the intensity of jurmp in u,, across - |F.
John).

@ If Ayy) = 1) for soma vy, and if the inifial value problem for the ODE has a unigue
salution (which is the case if b ¢ # 0 along ~), then Aiv) = 0,

@ Thatis, if u., is continuous af =ome point of -, then x,, is confinuous at all points of -,
and as a consequence of Conclusion 1 of Thearam, all secand order darivatives of x
are confinuous across .

o iy s ilT Bl b L Pl il i s Ll a2 2N




Now, we may interpret this lambda as the intensity of the jump in u xx, intensity of the jump
in u xx across gamma. This interpretation is taken from the book of F John on PDEs. So, if
lambda y 0 is O for some y O, that is lambda is O at some point. And if the initial value
problem that we had for the ODE has a unique solution, what is the ODE that we were
considering is the linear equation for lambda which we saw: 2 into b - ¢ phi dash into lambda

dash + a huge expression into lambda?

If that has a unique solution, of course, it is a homogeneous linear equation, O is always a
solution. And if it has uniqueness also, then it must be that lambda is identically equal to 0.
We already did this conclusion. So, if u xx is continuous at some point, this interpretation is
in terms of u xx. What is lambda? Afterall, it is a jump in u xx. If jump is 0 means what? u xx
IS continuous at that point, then it is continuous at all points of gamma. And therefore, once
you have u xx jump is Oy jump in u Xy and u yy is also 0 from conclusion 1.

(Refer Slide Time: 27:06)
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Location and speed of jumps

@ If the variable v is given the interpratation of time, then the equation x = iy} gives
the location of the jump in u,, at different instances of time.

© The speed of propagation of discontinuities is given by 5, which is equal to /(y),
and satisfies the differential equation

e !.‘. ¢

i p A ) ay

al((y)) = 2b{Ciy)) = ’."l"l;.'l'l‘,( ”‘} =0
dy

A Do hd Equun's

So, location and speed of jumps: If the variable y is given the interpretation of time, the
equation x = phi y gives the location of the jump in u xx for various time instances. At
different instances of time, the speed of propagation of discontinuities is given by dx by dy
which is = phi dash of y. dx by dy is phi dash of y and satisfies the differential equation a of
zetay - 2 b zeta y phi dash + ¢ of zeta y phi dash square, where zeta y is given by this 5 tuple.
(Refer Slide Time: 27:47)
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Summary
The equation :

dy (dyo
a(C(y)) = 2b6(((y)) =~ 4 ";:NJ( : ) =0
hid i dy VI B

appeared in two different contexts.

@ In Lecture 3.1 If Cauchy data is prescribed on any curve I';

Ny x=gly)

where » does not satisfy the above ODE, derivatives of all arders for a solution to
(2QL) can be determined at all points of I,

5. Say Gasesd) (11T Betvby)

So, let us summarise this equation which is the ODE which is there on this slide. It appeared
in 2 different contexts. In lecture 3.1 how it appeared? If the Cauchy data is prescribed along
the curve gamma to x = phi y, where phi does not satisfy the above ODE. Derivatives of all
orders for a solution to 2QL can be determined at all points of gamma.

(Refer Slide Time: 28:15)
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Summary
The equation :
L (d,,:' :
alC(y)) = 2b(C(y)) = +e({{y) —') ]
SV AR ([_\ sh dv

appeared in two different contexts.

© Inthis lecture: If ~ : x = ¢(y) Is curve of discontinuity for second order partial
derivatives for a piecewise smooth solution to (2QL)

In this lecture, if gamma given by x = phi y is a curve of discontinuity for second order
partial derivatives for a piecewise smooth solution of 2QL, as in the theorem that we have
stated today in this lecture, then phi solves the above ODE.

(Refer Slide Time: 28:39)
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Important question

For (2QL), how useful is tha equation ;
dy fdo\°
al(y)) = 2b(C(y))=— + elC(y) {—) ()
” S dy VN dy,

since a solution needs to be given for determining curves r = »(v)? Once a function « is
known, can't we find curves of discontinuity directly?

A OForetd Equdars

Important question is, for a second order Quasilinear equation, how useful is this equation?
Since, to write down this equation, zeta of y it requires the knowledge of a solution to the
2QL that needs to be given. So, how is it helpful in identifying these curves x = phi y, where

phi solves this equation? Once the function is known, can not we find cause of discontinuity

directly?
(Refer Slide Time: 29:10)
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Answers

@ If asolution u of (2QL) is given, then in principle, possible curves ~ across which
second derivatives of » may have jJump are already known.

Q However, the ODE gives an analytic characterization of such curves, and thus may
still be useful.

© Of course, for Semilinear equations, the ODE is useful in both the contexts.

o Delermine curves along which a Taylor series for solution may ba colained.

o |dentifying curves - across which piecewise smoath solutions may have discontinuities
in their second derivatives.

A b O Fureohd Equiins

Do we still need to solve this ODE? Answer: If a solution is given then in principle possible
curves gamma across which second order derivatives may have jumped are already known.
However, the ODE gives an analytic characterization of such curves. And thus may still be
useful. Of course, for semi linear equations, the ODE is useful in both the contexts.

Determine curves along which a Taylor series for a solution may be obtained.



Or identifying curves across which piecewise smooth solutions will have discontinuities in
the second order derivatives.
(Refer Slide Time: 29:50)
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o In forthcoming lectures, the ODE will play an impartant role in reducing a linear
second order PDE 1o a simpler form

o In the simpler form, the coefficients of 2nd order derivatives will be constants.

o The simpler form would be oblained using & change of coordinates.

o The ODE plays an important role in determining the change of coordinates

bl O P Equidies

So, in forthcoming lectures, the ODE will play an important role in reducing a linear second
order PDE to a simpler form. In the simpler form, the coefficients of second order derivatives
will be constants. To start with in a second order linear equation coefficients are functions of
x and y. But this ODE will help us in obtaining a simpler form of these equations in which

the coefficients of the second order derivatives are constants.

The simpler form would be obtained using change of coordinates. The body plays an
important role in determining the change of coordinates.
(Refer Slide Time: 30:35)
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Thank you




Thank you.



