Partial Differential Equations
Prof. Sivaji Ganesh
Department of Mathematics
Indian Institute of Technology — Bombay

Lecture —2.16
First Order Partial Differential Equations
Conservation Laws with a View Towards Global
Solutions to Burgers Equation

In the last lecture, we considered Cauchy problems for Burgers equation, where the Cauchy
data or the initial data was not smooth. Or even when the initial data was smooth, we found
that in one of the examples that solution is only piecewise smooth. So, such functions cannot

be solutions in the usual sense which we described as classical solutions. So, we asked the

question.

Is there a framework under which we can admit such functions also as solutions to Burgers
equation and in general for a first order partial differential equation. So, we look into that in
this lecture.

(Refer Slide Time: 01:03)
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Chapter 2: Conservation laws

0 Weak solutions to Conservation laws
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So, do not be afraid by the word conservation laws. We are not going to study too much
about it. It is only in the context of Burgers equation that we are going to discuss.

(Refer Slide Time: 01:10)
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Burgers equation and its Conservative form

o We came across two kinds of difficulties:
e asolution could not be determined in some region of the upper half-plane
o asolution bacomes mulli-valued due Lo intersecling base characleristics.

o The notion of solution we considered so far in this course is often called Classical
solution.

o As a consequence, initial value probiems do not admit global solutions.

S Bay S I Borrday) At Dot Equunrs

Burgers equation can be written in what is called a conservative form. We will come to that.
So, this is a brief recall from the last lecture, we considered for initial value problems for
Burgers equation. We came across 2 kinds of difficulties. First one was a solution could not
be determined in some region of the upper half plane because there were no base

characteristics.

And a solution becomes multivalued due to too many base characteristics entering a
particular region. That is another reason why we could not define what is the solution there.
There was some ambiguity. So, the notion of solution we considered so far prior to the
Burgers equation is often called classical solution. As a consequence, initial value problems
do not admit global solutions. We already understood that.

(Refer Slide Time: 02:07)
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Burgers equation and its Conservative form

o If we relax the notion of solution, then initial value problems may admit global
solutions.

o A relaxed notion of solution is possible for Burgers equation due 1o its conservative
form

o The relaxed notion is very natural for equations in conservative form.
o Recall that we came across conservation laws in traffic modelling.
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If we relax the notion of solution, then initial value problems may admit global solutions.
That possibility we will get. A relaxed notion of solution is possible for Burgers equation due
to its conservative form which is given by u t + u square by 2, this bracket x stands for do by
do x, differentiation with respect to x. So, assuming u is smooth when you do expand this by

chain rule what you getisut+uux=0.

We have used the u y, when we solved it by characteristics method and | told you that y has
the interpretation of time. So, therefore, it is u t. This is fine. The relaxed notion is very
natural for equations in conservative form. We are going to introduce one relax notion. Of
course, conservation laws are not new to us; we have seen them already in traffic modelling.
(Refer Slide Time: 03:10)
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Weak solutions to Conservation laws
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So, this notion is called generalised notion that we are talking about is called a relaxed notion
is called weak solutions to conservation laws.
(Refer Slide Time: 03:18)
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Guidelines for relaxing the notion of a solution

3 requirements on a relaxed solution
Any notion of a “relaxed solution” ("‘weak solution”) MUST have the following properties:

@ Any smooth solution should also be a weak solution.

Q Any waak solution which is smooth should be a classical solution

o N it the f iy (1)
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So, there is a guideline for relaxing the notion of a solution. Even for a conservation law we
can demand that it should be a nice function differentiable function so that u t + u square by 2
differentiation with respect to x = 0 is actually u t + u x = 0. But we want to admit in our
function, which are not so much smooth as solutions. Therefore, we would like to define a

new concept of a relaxed solution and there should be some guidelines.

What are those? 3 requirements are there. Any notion of relaxed solution, we may call it
weak solution must have the following 3 properties. What are they? Any smooth solution
should also be a weak solution. This is to be expected. It should be there. Otherwise, you are
defining some new solution. Earlier we said we want to relax because some equations may

not have the smooth solutions or a classical solutions.

But if they do, if they do have classical solution, we would like that the relaxed notion also it
admits as a solution. Therefore, small solution should also be a weak solution. This is usually
the guiding factor in defining any notion of weak solution. We will soon see how that is
going to be done. And any weak solution if it is smooth, then it should be classical solution.

This is the second requirement of course.

So, we prove that the notion of relaxed solution which we are going to give motivated by 1.
So we are going to define what is called a relaxed solution or weak solution concept. And
then we show that any smooth solution is a weak solution. And then we also show that any
weak solution which is smooth should is actually a classical solution. We will show that.
These are the 2.



(Refer Slide Time: 05:16)
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IVP for a Conservation law

Letu: R x 0.oc) be & classical soluton to the initial value problem
(f(n)), + (2lw)), =0. forxeR.y:x0,
ufx,0) -~ hix), forxcE,

where [, g,/ : & — R are contivously differentiable functions.

)

And then the third one is the most important thing and we are not going to address that. Any
reasonable problem should have a solution. Otherwise, what is the use of notion of a solution,
when you cannot show that such a solution exists, when the problem is reasonable? I am not
expanding what is reasonable, but this is what one has to remember. These are guidelines.
Discussion of this requirement for the notion of weak solution, we are not going to do.

That is beyond the scope of the course. So, let us look at the initial value problem for a
conservation law. Burgers equation in the conservative form is a special example of this,
where f of u is u, g of u is u square by 2. So, assume that this equation has a classical solution
that means a differentiable solution so that this you can expand: f dash u into u 'y, g dash u

into u x = 0 by chain rule and u x, 0 = h x.

This u of x, 0 makes sense and is equal to aprioiri X and h x. So, here f, g and h are apriori
given to u smooth functions.
(Refer Slide Time: 06:26)
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Arriving at a notion of weak solution

o Let g & CJV(R % [0,20)). Multiply the equation

with o, and integrate w.r L. (x.v) € [ x (0,0} to obtain

{ ) |‘ ', %
/ / g @l y Idx ay { } gluly @y d dy
Jo o ’ e Ji ‘
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So, let us see how we arrive at a notion of weak solution. First thing is to take a function phi
which is compactly supported in this domain R cross, close intervals 0, infinity, closed at 0.
And C infinity that is it is differentiable any number of times. C infinity function with
compact support and the domain is R cross 0O, infinity, 0O closed. And first thing is your
equation you have to multiply with phi.

This equation is multiplied with phi on integrate. So, this equation is simply this equation
multiplied with phi. The 2 terms are separated and integrate on your domain R cross O,
infinity. So, what have we achieved? Nothing. We could not, we have not relaxed that u can
be a lesser smooth function for non differentiable function etc. Therefore, first thing the
moment we see a derivative here and a derivative here first thing is, idea is, to shift this

derivative to C infinity function that we have.

So, therefore, we have to do integration by parts, in this integral with respect to vy, in this
integral with respect to x. So, with that we get from here we get this integral. And from from
here, when we do we get this integral and in this integral, there is a one boundary term which
is here. Because we are taking phi which are compactly supported, close 0, infinity not open
0, infinity.

If it is open O, infinity this term will not be there, because phi x, 0 will be 0 in that case. But
we are taking with this. That is because we want to account for the initial condition. That is
what is going to come here. So, this is what you get at the end of integration by parts.

(Refer Slide Time: 08:28)
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Arriving at a notion of weak solution (contd.)

We observed Ihat any classical solution « salislies the equalion g

il [

flu) - (x,y) drdy f(h(x))olx,0) dy
/ /H AL o . : ./' ¥

/ / .'|u|li—'lt.yld'.(.‘l‘ )
JeJo o
for avary & Ci (K x [, 00)).

o The above equation is meaningful even for i which are not "

o Anotion of weak solution gets defined once we mention what kind of functions i we
would like to be 'solutions”.
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T
So, what we observed just now is that any classical solution satisfies this integral equation
and for every phi in C 0, infinity R cross 0, infinity. And this equation, if you see it is
meaningful, even for u which are not C 1. For example, u is only continuous, f of u makes
sense. f of h of x of course makes sense, g of u makes sense. And these integrals are on
infinite domains, but phi is having compact support.

So essentially the integrals are on f a bounded set. Therefore, when you integrate continuous
functions and bounded sets, it is integrable. These are well defined integrals. So, therefore,
this is meaningful even for u which are not C 1. | just use a word u is continuous; of course,

you do not need even u to be continuous. What all you need is this should make sense.

A notion of weak solution gets defined once we mentioned what kind of functions u we
would like to allow them as solutions. So, we have to decide which u you are going to allow
as solutions for your problem then the notion gets defined. You will ask that this integral
equation should be satisfied for all phi in this space. And u should lie in some space that your
to identify, you have to decide.

(Refer Slide Time: 09:57)



Arriving at a notion of weak solution (contd.)

@ You fix the class of functions u that you are interested in or like with the only condition
that the equation

A i

[ [ flu)="ix.y)dvdy /tll':‘n:,'.'n_llm",'.
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KJ0
is satisfied for every ¢ & Ci¥'(K x [0,)).

¢ You would get a notion of a weak solution.
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So, you fix the class of function that you are interested in or you like with the only condition
that this equation is satisfied for every phi. You will get a notion of weak solution.
(Refer Slide Time: 10:13)
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Definition of weak solution

Lethe LS(R). we LS(R x 0.0c)) is saidto be a weak solution of the initial value
problem

(flul), + (glw)), =0, forxe R y>0,
ulx,0) = kix), forxc k.

it for all @ £ C3(R % [0,00)) the following equation is satisfied:
)

D b
K / flie)==x, v} ddy 4 / / elie)=={x, v) duely
bk Vg I | o

+ f JR) ), 01 de = 0.
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So, let us give one notion of weak solution here. Assume that h is L infinity of r, this loc
should not be there, because L infinity functions are bounded functions. Or if I put L infinity
loc of R, it just means that it is bounded function on every compact set. That is good enough.
So, L infinity loc is good. We can keep this. L infinity just means that Lebesgue measureable

functions which are bounded essentially bounded functions.

Whenever there is a loc it means that on compact sets some property holds. L infinity loc
means it is in L infinity of every compact subset of R. Now, u in L infinity loc of this set, see

now, we just want bounded measurable functions as solutions. Not even bounded



everywhere, bounded on every compact set that is good enough for this notion. In particular

non differentiable functions, all of them will come under this if they satisfy this condition.

So uin L infinity loc is said to be a weak solution of the initial value problem, which is here.
If for every phi C 0, infinity, this integral equation is satisfied, this was first of all derived
from this equation. Assuming that use a smooth solution multiplied with the phi coming from
the space and then we found this is satisfied. Now, we forget all that and we say as long as
this is satisfied | am happy.

And now | put some conditions so that this makes sense. And we are demanding it should be
equal to 0. One such class is L infinity loc R cross 0, infinity.
(Refer Slide Time: 12:02)
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Remark

In the previous definition, if we restrict 2 € C¥ (R x (0, 2¢)), we get

popx e s P00 B
() =[x, vidvdy = gl =—(x.¥dydv =0
/ / flu)==(x.y)drd ’ / 8(u) 5= (¥, )
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Then w15 called a weak solution to the Conservation law.

The notion of a weak solution to the initial valua problem is also referred to as its weak
formulation.
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The previous definition, if we restrict phi to compactly supported functions infinitely many
times differentiable R cross open 0, infinity, then the boundary integral, the integral and R, it
will vanish. It will be 0. As I pointed out phi of x, 0 is 0. So, we are left with only these 2
terms, then u is called a weak solution to the conservation law. It is not Cauchy problem for

the conservation law but weak solution to the conservation.

That means we are worried only about the equation and not the initial conditions. The notion
of a weak solution to the initial value problem is also referred to as its weak formulation. The
integral equation which we saw on the previous slide is often called a weak formulation of
the conservation law.

(Refer Slide Time: 12:55)



Good weak solutions are classical

Theorem
@ Let/ be a one-one function,
Q Lelue CHEx (0,5} N CIR % [0,00)) be & weak solution [0 the initial value problem

Then uis a classical solution of the initial value problem ,
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Now, this is what, we have finished the guiding principle part one. All smooth functions,
smooth solution should satisfy the new formulation. That is how we have derived. Now, we
will go to step 2, where we are going to show if you have a weak solution and it is smooth, it
must be classical solution. That is what we are going to establish now. So, for this we need to

assume slightly one extra condition on f.

Of course, for Burgers equation f of u is u. Of course that is a one-one function. So, let f be a
one-one function, let u be a smooth function that is C 1. Because it is a first order PDE C 1 is
required. And here | put continuity up to O that means u of x 0 makes sense. If you have
continuity upto this 0, close 0 that means that u of x, 0 makes sense. Suppose this is a weak
solution to the initial value problem, then u is a classical solution of the initial value problem.
(Refer Slide Time: 13:55)
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Proof of Theorem 0

Since u is & weak solution, and also smooth we can integrale by parts w.rt. v and v in the
first and second terms of equation

P '
/ / flu)-=(r.y) dedy ( / gl)——(r.y)ddy =),
JRJD oy RSO o

we get

f / (TR0, e Yy dy + f / (g(1)), p(x.v] dxay

b [ e, 0) = ()} b, 0) dv = 0.
Ja

What happens if we take @ 2 & CX (R x (0,5¢))?
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That is the conclusion. So, here we are assuming u is a weak solution and smooth, then we
are going to say the classical solution of the initial value problem. So, since u is a weak
solution and also smooth, what does it mean? | can go back, the strongness and the weakness,
what is the connection integration by parts. So, | need to do reverse integration by parts from

the weak formulation.

So, this is the meaning of what we have. Here it is a weak solution to the conservation law.
Now if you do integration by parts, you will get back this. This is a boundary term that is
going to come. So, what happens if | take a phi which is C 0, infinity open 0, infinity, this
term will not be there.

(Refer Slide Time: 14:53)

£aean [--al e B L AL v

. . - - o

iC
'K

Proof of Theorem (contd.)

What happens if we take a & CF(R x (0,2))?
We will gat
[ ((r Wll, ) ¢l v drdy =0
g X
Since the integrand is continuaus, and ¢ £ CJ°(R x (1))} Is arbitrary, tha fundamental

lemma in calculus of variations gives

b {
—flu) + —glu) =0 on K x (0,
o} o

Thus « is a solution to the conservation law .
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We will get this. Since the integrand is continuous, integrand is continuous. And phi C 0,
infinity is arbitrary, fundamental lemma in calculus of variation, essentially it means if you
integrate against C 0, infinity function, a certain function and you always get 0, then that
function must be 0. So, it is essentially like this. Just imagine something like this. We have

phi psi = 0 for all phi in C 0, infinity functions omega that would imply that psi is 0.

Under various assumptions psi, it is true. Definitely when psi is continuous, it is true. So,
therefore u is a solution to the conservation law.
(Refer Slide Time: 15:50)
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Proof of Theorem (contd.)

Since u is & solution 1o the conservation law , the equation

f / (), et )y daly ,‘Lf / (g(n)), ix.v)dydy

t / (e AN) = fihixh} ol ) de = 0
reduces to

/ (Gl 00) = FUAGx) )} ol 0) = 0.
vK

which is valid for every ¢ ¢ Ci*(R « |0, 00))
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Since u is a solution to the conservation law, this equation now just becomes the last, last
term, because these 2 together are 0. So, we have this. Now, once again phi is arbitrary,
therefore, this must be equal to this. And if the function f is one-one inside thing must be

equal to inside thing. That is idea. So, this is true for every phi in C 0, infinity R cross close 0,

infinity.

(Refer Slide Time: 16:17)
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o Any arbitrary function in y* £ C;°(R) arises as (1, 0) for some i € CF (R x [0, x))

o Forexample, w(x,¥) = vixlylv) where v ¢ CH(R), v € GV U.oc) with y = 1 onthe
interval [0, 1],

Thus tha equation

/ {ln(x.0)) = fihlx))} ¢lx,0)dy =0
becomes

/{i:u{a.l)l: filix))} oz de = 0.
R

Applying the fundamental lemma in cakculus of variations, and using that / is a one-one
function, we get

12048
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Now, if you notice, this is only function of x. Here, this is only a function of x. It is not like y,
there is no y. It is just a function of x integral is an R. So, we can get any smooth function C
0, infinity function of R through this phi.

Any psi in C 0, infinity R looks like psi of x, 0 for some phi here. For example, phi of X, y =
psi X into chi y, where psi is C 0, infinity R that is given to you. And chi is C 0, infinity of



close 0, infinity with chi identically equal to 1 in some interval 0, 1. So, when you put 'y = 0,

psi of 0 is 1. Therefore, you get psi of x. So that is simply this. Now, once again you apply.

This is a continuous function, integrate against any C 0, infinity of R function is 0, then this
function must be 0. That result I am loosely calling it as fundamental lemma in calculus
operations. So, using that f is a one-one function, we get to u x, 0 = h x. Otherwise to start
with you get f of u x, 0 = f of h x. Since f is one-one, you can take away the f and you get u X,
0=hx.

(Refer Slide Time: 17:37)
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Which piecewise smooth functions are NOT weak solutions?
Theorem

o Let DC R x(0.a) be aregion

o Let 4 be acurve in D that divides D into two parts such that D', v is composed of two
disjoint regions 1, and ;.

o Givenig £ C' (DN CIDy v and ws € C'UDs) N CIDy), define

mixy) if (e by
| wixy) if (k01 €D
\

o Let | denote the jump in the values of « across 4, and be defined by

[l{x,y) = walx,y) =l y) for (x.v) €.

8. g Garedy (17 Bay) A0 Orurect o Equunos

Now, we are going to look at another question. Which piecewise smooth functions are not
weak solutions? The following theorem will be helpful in deciding that. Suppose you have a
set D subset of R cross 0, infinity and suppose you have a curve that divides D into 2 parts.
So, generally one writes this kind of picture, this is D and you have a curve gamma. And it
cuts this into 2 pieces, D 1 and D 2.

And suppose u 1 is C 1 and continuous upto the boundary D 1 closure means up to boundary.
That means u 1 is here. It is smooth. Similarly u 2 is here. So, u 1 is C 1 of D 1 and also
continuous up to the boundary so that I want to talk about the values of u 1 on gamma.
Similarly, | want to talk about u 2, values of u 2 on gamma. So, | require C 1 of D 2 and

continuous upto D 2 closure, so that u 2 on gamma is also meaningful.

So, 2 condition generally people write as an intersection. So, this and thisand u 2 is C 1 in

the second domain and continuous up to its closure. Define a function u on D now like this. u



1inD1,ulinD 2. On gamma we are not defined. Now, let this bracket u denote the jump
in the values of u across gamma. That means we had this. This is D. We had D 1 here, D 2

here. Now u 1 on gamma makes sense at points of gamma.

Similarly u 2 on gamma makes sense. So, we can look at the jump u 2 at a point p on gamma
- u 1 at the point p. This is the jump, jJump in u at the point p. You can also defineu 1 - u 2 at
point p. | have used u 2 — u 1, both are same. You have to have just a consistent way of
defining it. So, these are definition, At any point X, y which is on gamma, you define the
jump inuasu2minusu 1 at that point.

(Refer Slide Time: 20:23)
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Theorem {contd.)
o Let f{u)| and |y(u)| denote the jumps in f(«) and g(u) across + respectively.

The following statements are equivalent.

1). 1is a weak solution to the conservation law.
(2. 0

© Along the curva -, Hanking-Hugonio! cenclion hokds:
)y + [glu) i, =0,

where (n,.n,) denotes the unit outward normal to + w.r.t. the domain D, (or D)

8, Snvg Gaseh (11T Burrbay) Pt Ororestd Equaios

So, we have defined what is the jump at all points on gamma. Now, similarly, you define f u,
jump infuand jumpingu.Jumpinfuatapointpisfofu2atp-fofulatp. That should
be the definition. Jump in f of u at a point p is on D 2, the value is going to be u 2. fof u 2 at
p minus f of u 1 at p. That is a jump. Similarly, g jump in g is also defined. Then the

following statements are equivalent.

Saying that u is a weak solution to the conservation law is same as saying that u 1and u 2 are
classical solutions in the case of the conservation law in both the domains D 1 and D 2, u 1 in
D landu2in D 2. And along the curve gamma certain condition holds whichisafewny +
gunx=0.Whatisnx, ny? It denotes the unit outward normal to gamma. That means, we

had like that, we had a gamma. Take a point, so, normal direction.



This tangential direction, this is normal direction. You can take either this or this. Any one of
them you choose, does not matter. That is what we are saying. So let us choose. For example,
this does not matter. Because the equation anyway is equal to 0. If you replace n x, n y with -
nx, -ny, itis the same.

(Refer Slide Time: 22:02)
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Theorem (contd.)

Q Further i the curve + is described by © = £[v) lor some function £, Rankine-Huganiol

condition takes the farm L
aE :'||'I_

d)' V:" I

Question: What is tha importance of a curve given by © = £(v?

Answer:
@ When v is time variable, the curve tracks the location of points from t-axis.

@ Tracking points of discontinuily or non-differentiability of the inifial data fx) whera
(0} = hix).

&, By Graradi (11T Bernbapi Aarhid O ot Exaidis

So, further if the curve is described by x = xi y, there is an interesting assumption is given by
X = Xi y. What does it mean? The curve looks like xi of y, y. That means it is a graph with
respect to the y variable. Then Rankine-Hugoniot condition takes this form, d xi by d y =
jump in g by jump in f. What is the importance of a curve given by x = xi y? See y is a time

variable. Y is time variable.

So it is like xi of t,. x = xi of t. It is giving you some points in x, which are the values of
somebody at t. So, it is telling you the location of somebody as time evolves. So, when vy is
time variable, the curve tracks the location of points. If the initial data is in x axis, the y, it
will track the location of the point from x axis. Tracking points of discontinuity or non
differentiability of the initial data where u x, 0 is h x. h x is the initial condition. So, these
kinds of things can be tracked by this curve.

(Refer Slide Time: 23:28)
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Proof

Proof of (1) = (2):
@ In the delinition of weak solution to the conservation law, using € C'(D:) (1 =1.2),
we get (1) of (2).
Let us derive Rankine-Hugoniot condition along points of ~.

Let ¢ € C37(D). The weak formulation of conservation law reduces 10

[ "5 (% !"-’ .'| =
/ {Hnl_—u. VI + glw)=—(x.¥) | dxdv=10
o\ oy X /
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That is why we always assume x = xi y. So, proof of 1 implies 2. In the definition of a weak
solution to the conservation law. Using phi, | am allowed to use any phi which is C 0, infinity
of D. Now I use C 0, infinity of D 1 and D 2. We get the first part. It is a solution. Because of
the smoothness we do integration by parts. Now let us derive the Rankine-Hugoniot condition

along points of gamma. So, take a phi which is C 0, infinity of D.

Now | cannot take D i. If | take D i | am ignoring other other D i. If | take D 1, C O, infinity D
1, I am forgetting D 2. Now, because the jumps are across gamma, gamma is there for both D
1 and D 2. It is a boundary. So, therefore, you take C 0, infinity of D and the weak
formulation of the conservation law reduces to this.

(Refer Slide Time: 24:31)
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Proof (contd.)

[ . 'Iv"v. f ﬁ'._ / ‘I p
/ |f|n| 6y +gle) l.'..'.l) didv =10
D\ oy oy J

Since 0 is the disjoint union of 1, and D,, we write
[ g o Ohgr o e
./n, l‘..' "'._'h-‘\"“ - gml?‘-l-l ..4.,"| dvdy
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And since D is a disjoint union, you write this integral as integral over D one + integral over

D 2.
(Refer Slide Time: 24:40)
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Proof (contd.) B

Let (n,,n,) denote the unit outward normal to D, at points of ~. Then the unit outward
normal to 1; at points of ~ is {—n,, —n, . Performing integration by parts in

e
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Now | think we have to do integration by parts. So, if n x and n y denote unit outward
normal to D 1, then — n X, - n y denotes unit outward normal to D 2. Because this unit

outward normal is what appears in integration by parts. So, performing integration by parts,

we get these terms. Do by doy hasgonetoand D 1 uisu l.uisulon D 1. Similarly here u

isu2onD 2.

That is why you got a f u 1y from here g u 1 x from here and this is a boundary term coming

from this integral, one with respect to X, one with respect to y. So, this is the other one.

(Refer Slide Time: 25:31)
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Proof (contd.)

Since u, and u; are classical solutions to conservation law (proved earlier), the equation

reduces to

/|{.'ln-' flug)y g+ {glte) - gl )y Jele.y) do = 0.

Using the arbitrariness of 2, we conclude that the R-H condition holds.
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Or you can also treat this as a Greens theorem. | will leave it to

you. We call integration by

parts by various names depending on the context. Fine. u 1and u 2 are classical solutions to

conservation law we already proved. Therefore, some things will be 0. The domain integrals

will go off, what remains is the gamma integral. This is what you have now, the notation n x,

ny is fixed, n x, ny is outward normal to D 1.

Then we have used — n X, - n'y is outward in normal to D 2 while doing integration by parts.

So, finally, we end up with this gamma integral. Now, phi is arbitrary. Therefore, integrand

must be 0 and which will give you Rankine-Hugoniot condition.
(Refer Slide Time: 26:27)
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Proof (contd.)

Further if the curve ~ is described by «

The Rankine-Hugoniot condition
[flubn, + [g{u)n, =0

becomes

Proof of (2) = (1) is left as an exercise.
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If the curve is given by x = xi y, we compute the normal. Normal

£(y), then normal direction is given by

QL ¥

- e i

Lo LU )

directionis 1,-d xi by dy.

Therefore, Rankine-Hugoniot condition becomes this equation, d xi by d y = jump in g by

jump in f. 2 implies 1 is very simple. So that is left as an exercise.
(Refer Slide Time: 26:49)
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Remark on the last Theorem

@ The curve ~ is described by 1 - £(v| for some function £,
o This means that ~ is the graph of a function of .
o The curva - & a curva ol discontinuily for weak sclution

o |n Burgers equation the variable v has the interpretation of a time variable, and thus the
function v+ &|v) tracks the location of discontinuity from its inifial location £(U} as the
time evolves.

@ Theorem is useful in rejecting the candidature of a piecewise smooth function
for a weak solution to IVPs

o by showing that Rankine-Hugoniot condition is not satisfied along the curve of
discontinuity.

At Ofuresdd Exquinrs Ll 2 18 anas

A few remarks on the last theorem. We already started with this remark when we started this
theorem. The curve gamma described by x = xi y for some function xi. This means that
gamma is the graph of a function of y. The curve gamma is a curve of discontinuity for a
weak solution. In Burgers equation, the variable y has the interpretation of time variable. And
as y going to xi y tracks the location of discontinuity from its initial location as the time

evolves.

So, theorem is useful in rejecting the candidature of a piecewise smooth function for a weak
solution to IVP. How you simply show the Rankine-Hugoniot condition is not satisfied along
the discontinuity curve. And therefore, it cannot be a weak solution. So, it is useful in
rejecting the candidature.

(Refer Slide Time: 27:47)
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Remark on the last Theorem (contd.)

o Theorem analyzed solutions with jumps across one curve.
o Question: Why not consider funclions wilh jumps across more than one curva?

o Natural question. Important while dealing with initial profiles having more than one point
of discontinuity.

¢ Theorem is applicable along every curve of discontinuity as long as the functions

considered are piecewise smooth functions.
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Theorem analyzed solutions with jumps across one curve. Why not consider a function with
jumps across more than one curve? Very natural question. It is important while dealing with
initial profiles, which have more than one point of non smoothness. Theorem is applicable
along every curve of discontinuity as long as the functions considered are piecewise smooth
functions.

(Refer Slide Time: 28:17)
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Caution: 1 multiple conservative forms!

o Burgers equation

u, =i, =0

can be written in the conservative form

foreach k ¢ M.
¢ Note that R-H condition also depends on &.
o Letky # ks, and n and v be weak solutions corresponding to &, and &, respectively.

A0 (oot Equdins

Caution is, there exist multiple conservative forms, multiple. For Burgers equation we have
written 1, u 'y + u square by 2 of x = 0. And these are so many, as many as natural numbers.
So, we have here at least, at least infinitely many are there. Now, which one will you
consider? You have to decide. So, note that R-H condition also depends on k. Because it is

jump in g by jump in f that is the equation for d xi by d y.

Now g varies. This is the g, new g. It depends on k. Similarly, this is f depends on care. So,
our h condition depends on k. So, what does that mean? If you take 2 different k s and take u
and v, which are weak solutions corresponding to the different case then the vice versa may
not be true.

(Refer Slide Time: 29:12)
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Weak solutions are not unique

From now onwards, we consider the following conservative form of Burgers equation

The carrespanding Rankine-Hugontot condition Is

dc €, v
—£YLY) = -
) 2

at points of .

So, therefore, in applications we have to realise

conservative form of your equation also. So, weak

relaxed the notion of a solution. Now a lot more functions. We do not expect uniqueness now

that is what is demonstrated by these examples.

conservative form throughout this lecture.

From now onwards, u i + u square by 2 x = 0.

Hugoniot condition. It will turn out to be ul at point of gamma + u 2 at the point of gamma
by 2. That means the average of u 1 and u 2. So, for example, thisisthe 1, D 1, D 2, u 1 here,
u 2 here. Take a point. Take the value of u 1 and take the value of u 2 and take the average.

Audid DFroddd Equdtioes

Wddeitis  Rdx

which one is the most correct or useful

solutions are not unique, because we have

Now, we are going to use the following

Let us write down what is the Rankine-

That should be the d xi by d vy, the slope with respect to y here.

(Refer Slide Time: 30:13)
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Example 1

Burgers equalion with initial data given by
fi(x)

has many weak solutions. A few of them are
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1 ifx<D,
I ifx>0
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This is example 1 that we considered in the last lecture, with initial data - 1and 1. - 1 upto X
less than O, 1 for x greater than or equal to 0. It has many weak solutions. Few of them are
being given here.

(Refer Slide Time: 30:30)

Foasan [--mi 00 B S Vi & &

- - ol - e i

ux,y) ==
eyl =—=1\y, /S ey =1

et D orested By

& S ey (7 Beartary) Ladaw1e  midn

For example, here we have 2 curves of discontinuity. One is the line x = - y, another one is a
line X = y. Now, let us see whether our R-H condition is satisfied here. What is the average of
| mean this is D 1, this is D 2 here. So, u land u 2 average. x by y on this line is — 1. Because
the line itself is x equal to minus y therefore, x by y is — 1. Therefore, what is the average of —
land-1?Itis-1.

So, X = xi y. That is the curve we are considering and we have to look at d xi by d y. So, in
this example, d xi by d y is - 1 and which is also equal to the average. Therefore, R-H
condition is satisfied across this line. Now, let us discuss across this line. Across this line one
side the value is 1 other side is x by y, but on this line x by y is 1. Therefore, average is 1 and

that is same as x = xi y, derivative of xi y is 1.

So, Rankine-Hugoniot condition is also satisfied across this line. Therefore, this is a weak
solution.
(Refer Slide Time: 31:53)
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Let us look at this. Here the curve of discontinuity is x = xi of y = 0. So therefore, d xi by d y,
of course is 0. And that is same as the average of - 1 and 1. — 1 + 1by 2 is 0. So, this is also a
weak solution.

(Refer Slide Time: 32:18)
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Let us look at this. In this case d xi by d y is this quantity of -1 + aby 2 - 1 + a by 2 and the
average is also that, - 1- a divided by 2, which is precisely this. Here d xi by dyis1 +aby 2
and that is precisely the average 1 + a by 2. Here xi y is 0, d xi by d y is 0. For this curve d xi
by d y is 0 and that is also the average, - a + a by 2 is 0. So, here also R-H condition is
satisfied across all the 3 discontinuity curves.

(Refer Slide Time: 33:00)



Example 2

Burgers equation with initial data given by

1 fx<0,

hiy) =
-1 ifx20

has many weak solutions, A few of them are
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Let us look at the example 2 which is 1 and — 1. This also has many weak solutions.
(Refer Slide Time: 33:07)

#oasaal [--aif- sl B & (L[]0 LI W
- - - e L I - — b —
5 4
plxy =1 - iy =-1
II
11§M)—u
Mokl D el Bt Lottt 3048

This is one of them. Here d xi by d y is 0. Because this equation x = xi of y = 0. Therefore, d

xi by d y is 0 and that is the average of 1 and minus 1. So R-H condition is satisfied.
(Refer Slide Time: 33:25)
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Here itis 1 - a by 2 and that is precisely d xi by d y. Thisis xi of y,d xi by d y, Here - 1 + a
by 2 and that is d xi by d y. So, R-H condition is satisfied across this line also. What about
this line? Also. Because - a + a by 2 is 0 and that is xi dash of y. Xi of y is 0. Therefore, xi
dash is also 0. So, R-H condition is satisfied across all the 3 lines.

(Refer Slide Time: 33:56)
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Example 3

Burgers equation with initial data given by

| ifx<0,
hix) 1<y fO<x<,
0 ifxzl

dandin U4
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Let us look at the example 3.
(Refer Slide Time: 34:01)
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You got this. Here, of course, there are many pieces. This is 1 line of discontinuity. This is
another line, this is another line. Let us look at the top line, this line. x =y + 1 by 2. What is
xi dash for this line? Half, y by 2. If xi of y is y by 2 + 1 by 2, derivative will be 1 by 2. And

that is precisely the average 1 + 0 by 2. So, across this line R-H condition is satisfied.

Let us check whether across this line R-H condition is satisfied. Across this line1-xby1-y
is nothing but 1. Because on this line x = y. So, therefore, 1 - x by 1 - x, u is 1 from this side,
u is 1 from this side. Therefore, average is 1 and that is also xi dash of y. Xi of y is 1,
therefore, xi of y is y. Therefore, xi dash of y is 1. Therefore R-H condition is satisfied here

also.

Now, let us look at this line x = 1. On this line x equal to 1, this u is 0, because itis 1 - x by 1
—y.x=1means itis 0 by 1 -y. So u is 0 this side. u is 0 this side. So average is 0. Now,
what about xi of vy, its derivative. Xi of y here is 1 and its derivative is 0. Therefore, R-H
condition is satisfied across all the 3 line segments.

(Refer Slide Time: 35:32)
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Now, the concept of entropy solutions, we are not going to study too much about it, but just
to get some awareness. So, we saw that there are too many weak solutions.
(Refer Slide Time: 35:44)
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Too may weak solutions!! Is there a special one?

o We saw that classical solutions may not exist for all > (), even for smooth initial data.
@ We relaxed the notion of solution to a weak solution.
o But, we got too many weak solutions defined for all x £ i and for all 1 (0.

o Thus our notion of weak solution is too much relaxation.

LethiuR )0 4148

5 Sng) Garesd) (117 Beerby) Mt O el Expadoes

Is there a special one? Somehow we are longing for a unique solution. So, we saw that
classical solutions may not exist for all t positive even for smooth initial data, for Burgers
equation we have seen. We relaxed the notion of solution to a weak solution. We did that. But
we got too many solutions, too many weak solutions defined for all x in R and for all t
positive. We just saw. Thus our notion of weak solution is too much relaxation.

(Refer Slide Time: 36:14)
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Too may weak solutions!! Is there a special one?

Question: Can we find a ‘good’ weak solution?
Answer: Notion of an Entropy solution appears!
o “Entropy solution is a physically relevant solution”
o Entropy solution Is at mos! one.

Further discussion on entropy solutions may be found in the books authored by Bressan;
Smoller,

With this, we conclude the discussion of 1st order PDEs.
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Can we find a good weak solution? This is where the notion of an entropy solution appears.
Entropy solution is, people call it a physically relevant solution. In examples of physical
importance, they have introduced the entropy, concept of entropy solution and that is indeed a
physically relevant solution. And even for a mathematical problems, which are very far from

obligations, any entropy condition people call it physical irrelevant solution.

There is no physics behind that. Entropy solution is what is a desirable solution because it
fixes some solution uniquely even in a mathematical problem. So entropy solution is at most
one. That is how the notion get developed. So, further discussion on entropy solutions may be
found in the books by Bressan and also the book of Smoller that I have earlier referred to in
the last class. So, with this we conclude the discussion of first order PDEs.

(Refer Slide Time: 37:16)
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Summary

@ How a notion of weak solution evolves was demonstrated.

o Minimum requirements that any reasonable notion of @ weak solution must satsly were
discussed

@ A notion of weak solution was developed for Burgers equation using & conservative
form.

o A characterization for curves of discontinuity for plecewise smooth weak solutions,
namely Rankine-Hugoniot condition vas obtained.

o Using the above condition, we identified some functions which are piecawisa smooth
solutions ta Burgers aquation. but are NOT weak solutions.
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So, what did we see in this lecture? How a notion of weak solution evolves? It was
demonstrated. Minimum requirements that any reasonable notion of weak solution must
satisfy. They were discussed. A notion of weak solution was developed for Burgers equation
using a conservative form. A characterization for curves or discontinuity for piecewise

smooth weak solutions was obtained.

That was called Rankhine-Hugoniot condition. Using the above condition we identified some
functions which are piecewise smooth solutions to Burgers equation. And, in fact, we have all
the examples that we have seen, they are all weak solutions only. We found them.

(Refer Slide Time: 38:00)
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Summary

Q Weak solutions are not unique in general, and thus one needs to impose more
conditions on the notion of solution so that the problem admits only one solution

Q This lecture justifies the use of non-smooth initial conditions considered for Burgers
equation in Lecture 2,15

Liliv 210 Hids
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So, weak solutions are not unique in general. And thus one needs to impose more conditions
on the notion of solution so that the problem admits only 1 solution after this imposition of
new rules. And this lecture is intended mainly to say that whatever initial conditions and
solutions that we considered in 2.15 lecture, of course, they are not classical solution. But still
they have some meaning and they can be given meaning in the sense of weak solutions and
further continuation is entropy solutions.

(Refer Slide Time: 38:37)
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