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In the last lecture, we considered Cauchy problems for Burgers equation, where the Cauchy 

data or the initial data was not smooth. Or even when the initial data was smooth, we found 

that in one of the examples that solution is only piecewise smooth. So, such functions cannot 

be solutions in the usual sense which we described as classical solutions. So, we asked the 

question.  

 

Is there a framework under which we can admit such functions also as solutions to Burgers 

equation and in general for a first order partial differential equation. So, we look into that in 

this lecture.  

(Refer Slide Time: 01:03) 

 

So, do not be afraid by the word conservation laws. We are not going to study too much 

about it. It is only in the context of Burgers equation that we are going to discuss.  
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Burgers equation can be written in what is called a conservative form. We will come to that. 

So, this is a brief recall from the last lecture, we considered for initial value problems for 

Burgers equation. We came across 2 kinds of difficulties. First one was a solution could not 

be determined in some region of the upper half plane because there were no base 

characteristics.  

 

And a solution becomes multivalued due to too many base characteristics entering a 

particular region. That is another reason why we could not define what is the solution there. 

There was some ambiguity. So, the notion of solution we considered so far prior to the 

Burgers equation is often called classical solution. As a consequence, initial value problems 

do not admit global solutions. We already understood that. 
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If we relax the notion of solution, then initial value problems may admit global solutions. 

That possibility we will get. A relaxed notion of solution is possible for Burgers equation due 

to its conservative form which is given by u t + u square by 2, this bracket x stands for do by 

do x, differentiation with respect to x. So, assuming u is smooth when you do expand this by 

chain rule what you get is u t + u u x = 0.  

 

We have used the u y, when we solved it by characteristics method and I told you that y has 

the interpretation of time. So, therefore, it is u t. This is fine. The relaxed notion is very 

natural for equations in conservative form. We are going to introduce one relax notion. Of 

course, conservation laws are not new to us; we have seen them already in traffic modelling. 
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So, this notion is called generalised notion that we are talking about is called a relaxed notion 

is called weak solutions to conservation laws.  
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So, there is a guideline for relaxing the notion of a solution. Even for a conservation law we 

can demand that it should be a nice function differentiable function so that u t + u square by 2 

differentiation with respect to x = 0 is actually u t + u x = 0. But we want to admit in our 

function, which are not so much smooth as solutions. Therefore, we would like to define a 

new concept of a relaxed solution and there should be some guidelines.  

 

What are those? 3 requirements are there. Any notion of relaxed solution, we may call it 

weak solution must have the following 3 properties. What are they? Any smooth solution 

should also be a weak solution. This is to be expected. It should be there. Otherwise, you are 

defining some new solution. Earlier we said we want to relax because some equations may 

not have the smooth solutions or a classical solutions.  

 

But if they do, if they do have classical solution, we would like that the relaxed notion also it 

admits as a solution. Therefore, small solution should also be a weak solution. This is usually 

the guiding factor in defining any notion of weak solution. We will soon see how that is 

going to be done. And any weak solution if it is smooth, then it should be classical solution. 

This is the second requirement of course.  

 

So, we prove that the notion of relaxed solution which we are going to give motivated by 1. 

So we are going to define what is called a relaxed solution or weak solution concept. And 

then we show that any smooth solution is a weak solution. And then we also show that any 

weak solution which is smooth should is actually a classical solution. We will show that. 

These are the 2.  
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And then the third one is the most important thing and we are not going to address that. Any 

reasonable problem should have a solution. Otherwise, what is the use of notion of a solution, 

when you cannot show that such a solution exists, when the problem is reasonable? I am not 

expanding what is reasonable, but this is what one has to remember. These are guidelines. 

Discussion of this requirement for the notion of weak solution, we are not going to do.  

 

That is beyond the scope of the course. So, let us look at the initial value problem for a 

conservation law. Burgers equation in the conservative form is a special example of this, 

where f of u is u, g of u is u square by 2. So, assume that this equation has a classical solution 

that means a differentiable solution so that this you can expand: f dash u into u y, g dash u 

into u x = 0 by chain rule and u x, 0 = h x.  

 

This u of x, 0 makes sense and is equal to aprioiri x and h x. So, here f, g and h are apriori 

given to u smooth functions.  
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So, let us see how we arrive at a notion of weak solution. First thing is to take a function phi 

which is compactly supported in this domain R cross, close intervals 0, infinity, closed at 0. 

And C infinity that is it is differentiable any number of times. C infinity function with 

compact support and the domain is R cross 0, infinity, 0 closed. And first thing is your 

equation you have to multiply with phi.  

 

This equation is multiplied with phi on integrate. So, this equation is simply this equation 

multiplied with phi. The 2 terms are separated and integrate on your domain R cross 0, 

infinity. So, what have we achieved? Nothing. We could not, we have not relaxed that u can 

be a lesser smooth function for non differentiable function etc. Therefore, first thing the 

moment we see a derivative here and a derivative here first thing is, idea is, to shift this 

derivative to C infinity function that we have.  

 

So, therefore, we have to do integration by parts, in this integral with respect to y, in this 

integral with respect to x. So, with that we get from here we get this integral. And from from 

here, when we do we get this integral and in this integral, there is a one boundary term which 

is here. Because we are taking phi which are compactly supported, close 0, infinity not open 

0, infinity.  

 

If it is open 0, infinity this term will not be there, because phi x, 0 will be 0 in that case. But 

we are taking with this. That is because we want to account for the initial condition. That is 

what is going to come here. So, this is what you get at the end of integration by parts.  
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So, what we observed just now is that any classical solution satisfies this integral equation 

and for every phi in C 0, infinity R cross 0, infinity. And this equation, if you see it is 

meaningful, even for u which are not C 1. For example, u is only continuous, f of u makes 

sense. f of h of x of course makes sense, g of u makes sense. And these integrals are on 

infinite domains, but phi is having compact support.  

 

So essentially the integrals are on f a bounded set. Therefore, when you integrate continuous 

functions and bounded sets, it is integrable. These are well defined integrals. So, therefore, 

this is meaningful even for u which are not C 1. I just use a word u is continuous; of course, 

you do not need even u to be continuous. What all you need is this should make sense.  

 

A notion of weak solution gets defined once we mentioned what kind of functions u we 

would like to allow them as solutions. So, we have to decide which u you are going to allow 

as solutions for your problem then the notion gets defined. You will ask that this integral 

equation should be satisfied for all phi in this space. And u should lie in some space that your 

to identify, you have to decide.  
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So, you fix the class of function that you are interested in or you like with the only condition 

that this equation is satisfied for every phi. You will get a notion of weak solution.  
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So, let us give one notion of weak solution here. Assume that h is L infinity of r, this loc 

should not be there, because L infinity functions are bounded functions. Or if I put L infinity 

loc of R, it just means that it is bounded function on every compact set. That is good enough. 

So, L infinity loc is good. We can keep this. L infinity just means that Lebesgue measureable 

functions which are bounded essentially bounded functions.  

 

Whenever there is a loc it means that on compact sets some property holds. L infinity loc 

means it is in L infinity of every compact subset of R. Now, u in L infinity loc of this set, see 

now, we just want bounded measurable functions as solutions. Not even bounded 



everywhere, bounded on every compact set that is good enough for this notion. In particular 

non differentiable functions, all of them will come under this if they satisfy this condition.  

 

So u in L infinity loc is said to be a weak solution of the initial value problem, which is here. 

If for every phi C 0, infinity, this integral equation is satisfied, this was first of all derived 

from this equation. Assuming that use a smooth solution multiplied with the phi coming from 

the space and then we found this is satisfied. Now, we forget all that and we say as long as 

this is satisfied I am happy.  

 

And now I put some conditions so that this makes sense. And we are demanding it should be 

equal to 0. One such class is L infinity loc R cross 0, infinity.  
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The previous definition, if we restrict phi to compactly supported functions infinitely many 

times differentiable R cross open 0, infinity, then the boundary integral, the integral and R, it 

will vanish. It will be 0. As I pointed out phi of x, 0 is 0. So, we are left with only these 2 

terms, then u is called a weak solution to the conservation law. It is not Cauchy problem for 

the conservation law but weak solution to the conservation.  

 

That means we are worried only about the equation and not the initial conditions. The notion 

of a weak solution to the initial value problem is also referred to as its weak formulation. The 

integral equation which we saw on the previous slide is often called a weak formulation of 

the conservation law.  
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Now, this is what, we have finished the guiding principle part one. All smooth functions, 

smooth solution should satisfy the new formulation. That is how we have derived. Now, we 

will go to step 2, where we are going to show if you have a weak solution and it is smooth, it 

must be classical solution. That is what we are going to establish now. So, for this we need to 

assume slightly one extra condition on f.  

 

Of course, for Burgers equation f of u is u. Of course that is a one-one function. So, let f be a 

one-one function, let u be a smooth function that is C 1. Because it is a first order PDE C 1 is 

required. And here I put continuity up to 0 that means u of x 0 makes sense. If you have 

continuity upto this 0, close 0 that means that u of x, 0 makes sense. Suppose this is a weak 

solution to the initial value problem, then u is a classical solution of the initial value problem.  
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That is the conclusion. So, here we are assuming u is a weak solution and smooth, then we 

are going to say the classical solution of the initial value problem. So, since u is a weak 

solution and also smooth, what does it mean? I can go back, the strongness and the weakness, 

what is the connection integration by parts. So, I need to do reverse integration by parts from 

the weak formulation.  

 

So, this is the meaning of what we have. Here it is a weak solution to the conservation law. 

Now if you do integration by parts, you will get back this. This is a boundary term that is 

going to come. So, what happens if I take a phi which is C 0, infinity open 0, infinity, this 

term will not be there.  
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We will get this. Since the integrand is continuous, integrand is continuous. And phi C 0, 

infinity is arbitrary, fundamental lemma in calculus of variation, essentially it means if you 

integrate against C 0, infinity function, a certain function and you always get 0, then that 

function must be 0. So, it is essentially like this. Just imagine something like this. We have 

phi psi = 0 for all phi in C 0, infinity functions omega that would imply that psi is 0.  

 

Under various assumptions psi, it is true. Definitely when psi is continuous, it is true. So, 

therefore u is a solution to the conservation law.  
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Since u is a solution to the conservation law, this equation now just becomes the last, last 

term, because these 2 together are 0. So, we have this. Now, once again phi is arbitrary, 

therefore, this must be equal to this. And if the function f is one-one inside thing must be 

equal to inside thing. That is idea. So, this is true for every phi in C 0, infinity R cross close 0, 

infinity.  
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Now, if you notice, this is only function of x. Here, this is only a function of x. It is not like y, 

there is no y. It is just a function of x integral is an R. So, we can get any smooth function C 

0, infinity function of R through this phi.  

 

Any psi in C 0, infinity R looks like psi of x, 0 for some phi here. For example, phi of x, y = 

psi x into chi y, where psi is C 0, infinity R that is given to you. And chi is C 0, infinity of 



close 0, infinity with chi identically equal to 1 in some interval 0, 1. So, when you put y = 0, 

psi of 0 is 1. Therefore, you get psi of x. So that is simply this. Now, once again you apply.  

 

This is a continuous function, integrate against any C 0, infinity of R function is 0, then this 

function must be 0. That result I am loosely calling it as fundamental lemma in calculus 

operations. So, using that f is a one-one function, we get to u x, 0 = h x. Otherwise to start 

with you get f of u x, 0 = f of h x. Since f is one-one, you can take away the f and you get u x, 

0 = h x.  
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Now, we are going to look at another question. Which piecewise smooth functions are not 

weak solutions? The following theorem will be helpful in deciding that. Suppose you have a 

set D subset of R cross 0, infinity and suppose you have a curve that divides D into 2 parts. 

So, generally one writes this kind of picture, this is D and you have a curve gamma. And it 

cuts this into 2 pieces, D 1 and D 2.  

 

And suppose u 1 is C 1 and continuous upto the boundary D 1 closure means up to boundary. 

That means u 1 is here. It is smooth. Similarly u 2 is here. So, u 1 is C 1 of D 1 and also 

continuous up to the boundary so that I want to talk about the values of u 1 on gamma. 

Similarly, I want to talk about u 2, values of u 2 on gamma. So, I require C 1 of D 2 and 

continuous upto D 2 closure, so that u 2 on gamma is also meaningful.  

 

So, 2 condition generally people write as an intersection. So, this and this and u 2 is C 1 in 

the second domain and continuous up to its closure. Define a function u on D now like this. u 



1 in D 1, u 1 in D 2. On gamma we are not defined. Now, let this bracket u denote the jump 

in the values of u across gamma. That means we had this. This is D. We had D 1 here, D 2 

here. Now u 1 on gamma makes sense at points of gamma.  

 

Similarly u 2 on gamma makes sense. So, we can look at the jump u 2 at a point p on gamma 

- u 1 at the point p. This is the jump, jump in u at the point p. You can also define u 1 - u 2 at 

point p. I have used u 2 – u 1, both are same. You have to have just a consistent way of 

defining it. So, these are definition, At any point x, y which is on gamma, you define the 

jump in u as u 2 minus u 1 at that point.  
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So, we have defined what is the jump at all points on gamma. Now, similarly, you define f u, 

jump in f u and jump in g u. Jump in f u at a point p is f of u 2 at p - f of u 1 at p. That should 

be the definition. Jump in f of u at a point p is on D 2, the value is going to be u 2. f of u 2 at 

p minus f of u 1 at p. That is a jump. Similarly, g jump in g is also defined. Then the 

following statements are equivalent.  

 

Saying that u is a weak solution to the conservation law is same as saying that u 1and u 2 are 

classical solutions in the case of the conservation law in both the domains D 1 and D 2, u 1 in 

D 1 and u 2 in D 2. And along the curve gamma certain condition holds which is a few n y + 

g u n x = 0. What is n x, n y? It denotes the unit outward normal to gamma. That means, we 

had like that, we had a gamma. Take a point, so, normal direction.  

 



This tangential direction, this is normal direction. You can take either this or this. Any one of 

them you choose, does not matter. That is what we are saying. So let us choose. For example, 

this does not matter. Because the equation anyway is equal to 0. If you replace n x, n y with - 

n x, - n y, it is the same.  
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So, further if the curve is described by x = xi y, there is an interesting assumption is given by 

x = xi y. What does it mean? The curve looks like xi of y, y. That means it is a graph with 

respect to the y variable. Then Rankine-Hugoniot condition takes this form, d xi by d y = 

jump in g by jump in f. What is the importance of a curve given by x = xi y? See y is a time 

variable. Y is time variable.  

 

So it is like xi of t,. x = xi of t. It is giving you some points in x, which are the values of 

somebody at t. So, it is telling you the location of somebody as time evolves. So, when y is 

time variable, the curve tracks the location of points. If the initial data is in x axis, the y, it 

will track the location of the point from x axis. Tracking points of discontinuity or non 

differentiability of the initial data where u x, 0 is h x. h x is the initial condition. So, these 

kinds of things can be tracked by this curve.  
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That is why we always assume x = xi y. So, proof of 1 implies 2. In the definition of a weak 

solution to the conservation law. Using phi, I am allowed to use any phi which is C 0, infinity 

of D. Now I use C 0, infinity of D 1 and D 2. We get the first part. It is a solution. Because of 

the smoothness we do integration by parts. Now let us derive the Rankine-Hugoniot condition 

along points of gamma. So, take a phi which is C 0, infinity of D.  

 

Now I cannot take D i. If I take D i I am ignoring other other D i. If I take D 1, C 0, infinity D 

1, I am forgetting D 2. Now, because the jumps are across gamma, gamma is there for both D 

1 and D 2. It is a boundary. So, therefore, you take C 0, infinity of D and the weak 

formulation of the conservation law reduces to this. 
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And since D is a disjoint union, you write this integral as integral over D one + integral over 

D 2.  
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 Now I think we have to do integration by parts. So, if n x and n y denote unit outward 

normal to D 1, then – n x, - n y denotes unit outward normal to D 2. Because this unit 

outward normal is what appears in integration by parts. So, performing integration by parts, 

we get these terms. Do by do y has gone to and D 1 u is u 1. u is u 1 on D 1. Similarly here u 

is u 2 on D 2.  

 

That is why you got a f u 1 y from here g u 1 x from here and this is a boundary term coming 

from this integral, one with respect to x, one with respect to y. So, this is the other one.  
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Or you can also treat this as a Greens theorem. I will leave it to you. We call integration by 

parts by various names depending on the context. Fine. u 1and u 2 are classical solutions to 

conservation law we already proved. Therefore, some things will be 0. The domain integrals 

will go off, what remains is the gamma integral. This is what you have now, the notation n x, 

n y is fixed, n x, n y is outward normal to D 1.  

 

Then we have used – n x, - n y is outward in normal to D 2 while doing integration by parts. 

So, finally, we end up with this gamma integral. Now, phi is arbitrary. Therefore, integrand 

must be 0 and which will give you Rankine-Hugoniot condition.  
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If the curve is given by x = xi y, we compute the normal. Normal direction is 1, - d xi by d y. 

Therefore, Rankine-Hugoniot condition becomes this equation, d xi by d y = jump in g by 

jump in f. 2 implies 1 is very simple. So that is left as an exercise.  
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A few remarks on the last theorem. We already started with this remark when we started this 

theorem. The curve gamma described by x = xi y for some function xi. This means that 

gamma is the graph of a function of y. The curve gamma is a curve of discontinuity for a 

weak solution. In Burgers equation, the variable y has the interpretation of time variable. And 

as y going to xi y tracks the location of discontinuity from its initial location as the time 

evolves.  

 

So, theorem is useful in rejecting the candidature of a piecewise smooth function for a weak 

solution to IVP. How you simply show the Rankine-Hugoniot condition is not satisfied along 

the discontinuity curve. And therefore, it cannot be a weak solution. So, it is useful in 

rejecting the candidature.  
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Theorem analyzed solutions with jumps across one curve. Why not consider a function with 

jumps across more than one curve? Very natural question. It is important while dealing with 

initial profiles, which have more than one point of non smoothness. Theorem is applicable 

along every curve of discontinuity as long as the functions considered are piecewise smooth 

functions.  
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Caution is, there exist multiple conservative forms, multiple. For Burgers equation we have 

written 1, u y + u square by 2 of x = 0. And these are so many, as many as natural numbers. 

So, we have here at least, at least infinitely many are there. Now, which one will you 

consider? You have to decide. So, note that R-H condition also depends on k. Because it is 

jump in g by jump in f that is the equation for d xi by d y.  

 

Now g varies. This is the g, new g. It depends on k. Similarly, this is f depends on care. So, 

our h condition depends on k. So, what does that mean? If you take 2 different k s and take u 

and v, which are weak solutions corresponding to the different case then the vice versa may 

not be true.  
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So, therefore, in applications we have to realise which one is the most correct or useful 

conservative form of your equation also. So, weak solutions are not unique, because we have 

relaxed the notion of a solution. Now a lot more functions. We do not expect uniqueness now 

that is what is demonstrated by these examples. Now, we are going to use the following 

conservative form throughout this lecture.  

 

From now onwards, u i + u square by 2 x = 0. Let us write down what is the Rankine-

Hugoniot condition. It will turn out to be u1 at point of gamma + u 2 at the point of gamma 

by 2. That means the average of u 1 and u 2. So, for example, this is the 1, D 1, D 2, u 1 here, 

u 2 here. Take a point. Take the value of u 1 and take the value of u 2 and take the average. 

That should be the d xi by d y, the slope with respect to y here.  
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This is example 1 that we considered in the last lecture, with initial data - 1and 1. - 1 upto x 

less than 0, 1 for x greater than or equal to 0. It has many weak solutions. Few of them are 

being given here. 
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For example, here we have 2 curves of discontinuity. One is the line x = - y, another one is a 

line x = y. Now, let us see whether our R-H condition is satisfied here. What is the average of 

I mean this is D 1, this is D 2 here. So, u 1and u 2 average. x by y on this line is – 1. Because 

the line itself is x equal to minus y therefore, x by y is – 1. Therefore, what is the average of – 

1 and – 1? It is -1.  

 

So, x = xi y. That is the curve we are considering and we have to look at d xi by d y. So, in 

this example, d xi by d y is - 1 and which is also equal to the average. Therefore, R-H 

condition is satisfied across this line. Now, let us discuss across this line. Across this line one 

side the value is 1 other side is x by y, but on this line x by y is 1. Therefore, average is 1 and 

that is same as x = xi y, derivative of xi y is 1.  

 

So, Rankine-Hugoniot condition is also satisfied across this line. Therefore, this is a weak 

solution.  
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Let us look at this. Here the curve of discontinuity is x = xi of y = 0. So therefore, d xi by d y, 

of course is 0. And that is same as the average of - 1 and 1. – 1 + 1by 2 is 0. So, this is also a 

weak solution.  
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Let us look at this. In this case d xi by d y is this quantity of -1 + a by 2 - 1 + a by 2 and the 

average is also that, - 1- a divided by 2, which is precisely this. Here d xi by d y is 1 + a by 2 

and that is precisely the average 1 + a by 2. Here xi y is 0, d xi by d y is 0. For this curve d xi 

by d y is 0 and that is also the average, - a + a by 2 is 0. So, here also R-H condition is 

satisfied across all the 3 discontinuity curves.  
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Let us look at the example 2 which is 1 and – 1. This also has many weak solutions.  
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This is one of them. Here d xi by d y is 0. Because this equation x = xi of y = 0. Therefore, d 

xi by d y is 0 and that is the average of 1 and minus 1. So R-H condition is satisfied.  
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Here it is 1 - a by 2 and that is precisely d xi by d y. This is xi of y, d xi by d y, Here - 1 + a 

by 2 and that is d xi by d y. So, R-H condition is satisfied across this line also. What about 

this line? Also. Because - a + a by 2 is 0 and that is xi dash of y. Xi of y is 0. Therefore, xi 

dash is also 0. So, R-H condition is satisfied across all the 3 lines.  
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Let us look at the example 3. 
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You got this. Here, of course, there are many pieces. This is 1 line of discontinuity. This is 

another line, this is another line. Let us look at the top line, this line. x = y + 1 by 2. What is 

xi dash for this line? Half, y by 2. If xi of y is y by 2 + 1 by 2, derivative will be 1 by 2. And 

that is precisely the average 1 + 0 by 2. So, across this line R-H condition is satisfied.  

 

Let us check whether across this line R-H condition is satisfied. Across this line 1 - x by 1 - y 

is nothing but 1. Because on this line x = y. So, therefore, 1 - x by 1 - x, u is 1 from this side, 

u is 1 from this side. Therefore, average is 1 and that is also xi dash of y. Xi of y is 1, 

therefore, xi of y is y. Therefore, xi dash of y is 1. Therefore R-H condition is satisfied here 

also.  

 

Now, let us look at this line x = 1. On this line x equal to 1, this u is 0, because it is 1 - x by 1 

– y. x = 1 means it is 0 by 1 - y. So u is 0 this side. u is 0 this side. So average is 0. Now, 

what about xi of y, its derivative. Xi of y here is 1 and its derivative is 0. Therefore, R-H 

condition is satisfied across all the 3 line segments.  
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Now, the concept of entropy solutions, we are not going to study too much about it, but just 

to get some awareness. So, we saw that there are too many weak solutions.  
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Is there a special one? Somehow we are longing for a unique solution. So, we saw that 

classical solutions may not exist for all t positive even for smooth initial data, for Burgers 

equation we have seen. We relaxed the notion of solution to a weak solution. We did that. But 

we got too many solutions, too many weak solutions defined for all x in R and for all t 

positive. We just saw. Thus our notion of weak solution is too much relaxation.  
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Can we find a good weak solution? This is where the notion of an entropy solution appears. 

Entropy solution is, people call it a physically relevant solution. In examples of physical 

importance, they have introduced the entropy, concept of entropy solution and that is indeed a 

physically relevant solution. And even for a mathematical problems, which are very far from 

obligations, any entropy condition people call it physical irrelevant solution.  

 

There is no physics behind that. Entropy solution is what is a desirable solution because it 

fixes some solution uniquely even in a mathematical problem. So entropy solution is at most 

one. That is how the notion get developed. So, further discussion on entropy solutions may be 

found in the books by Bressan and also the book of Smoller that I have earlier referred to in 

the last class. So, with this we conclude the discussion of first order PDEs.  
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So, what did we see in this lecture? How a notion of weak solution evolves? It was 

demonstrated. Minimum requirements that any reasonable notion of weak solution must 

satisfy. They were discussed. A notion of weak solution was developed for Burgers equation 

using a conservative form. A characterization for curves or discontinuity for piecewise 

smooth weak solutions was obtained.  

 

That was called Rankhine-Hugoniot condition. Using the above condition we identified some 

functions which are piecewise smooth solutions to Burgers equation. And, in fact, we have all 

the examples that we have seen, they are all weak solutions only. We found them.  
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So, weak solutions are not unique in general. And thus one needs to impose more conditions 

on the notion of solution so that the problem admits only 1 solution after this imposition of 

new rules. And this lecture is intended mainly to say that whatever initial conditions and 

solutions that we considered in 2.15 lecture, of course, they are not classical solution. But still 

they have some meaning and they can be given meaning in the sense of weak solutions and 

further continuation is entropy solutions.  
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Thank you.  


