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Welcome to a tutorial on Cauchy linear equations. In this, we are going to solve some Cauchy 

problems for Quasilinear equations.  
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And we also explained through examples, the local nature of solutions to Cauchy problem. 

Recall that the existence and uniqueness theorem gave us existence of a solution only nearby 

any fixed point on the datum curve. So, is that all that can be expected or can we get a 

solution whose integral surface consists of the entire datum curve or defined on entire domain 

omega 2? 

 

These are the questions; we are going to discuss under this heading on the local nature of 

solutions to Cauchy problem.  
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So, let us start some problems. Examples, this is the simplest example that we considered in 

the beginning u x = 0 and data is u 0 y = sin y. So, how do we solve this? We need to first 

parameterize the given Cauchy data x = 0, y = s, z = sin s and y in R, therefore, s in R. So, 

this is our datum curve. Then we need to look at the characteristics system of ODE for the 

given equation.   

 

Recall dx by dt = a in this example, a u x that is a is 1, b and c are 0. So, dy by dt = b, which 

is 0; dz by dt = c, which is 0. So, this is a characteristic system of ODE associated to this 

equation. Now, we need to solve these ODEs, system of ODEs so, with the initial condition. 

So, that at t = 0, we are at a point on gamma. 
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So, x of 0, when time is 0 = 0, y of 0 is s that have 0 equal to sin s, because 0, s, sin s is an 

arbitrary point on gamma, the datum curve. Solution is very simple to obtain. So, we get x = 

X of t s = t, y = Y of t s = s and z = Z of t s = sin s. That is very easy to see, because see here, 

dx by dt = 1, therefore, x has to be t + constant. At t = 0, x must be 0 therefore, this is x = t.  

 

Here, dy by dt = 0 that means y is constant. At t = 0, it must be s. Therefore, y = s. dz by dt = 

0 that means z is constant with respect to t, but at t = 0, it should be sin x. That will give us 

the solutions. Now, we need to eliminate or we need to solve for t and s in terms of x and y 

from the first 2 equations, which is obvious in this example. t is T of x y = x, s = X of x y = y. 

So, we have worked. 

 

Now, we need to substitute in this and we get a solution. So, u x y = sin y, which is defined 

for all x y in R 2.  
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These are pictures that we have already seen. The red is x axis; green is y axis and this is z 

axis. And this one which is in magenta colour is the initial data u 0 y = sin y. So, 0, s, sin s as 

varies in R, you get this curve. And integral surface is a blue colour one, these are the 

characteristic curves; here, they are straight lines. We already saw that.  
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Let us look at another example. This is also linear equation, u x + u y + u = 1 and the Cauchy 

data is of this nature, it is prescribed on some curve u of x, x + x square = sin x. So, as before, 

you need to parameterize Cauchy data. So, s, x = s, y = s + s square and z = sin s and for s 

positive, done. And we need to write characteristic system of ODE. dx by dt = a, in this 

example, a is 1; dv by dt is b, b is 1; dz by dt is c, remember c is anybody who is on the other 

side.  

 

So, it will be 1 – z. You have to be careful there. Do not think, it is 1. It is 1 – z, because the 

equation is of the form a u x + b u y = 2 c. So, dz by dt = c. Therefore, it is 1 – z. 
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Now, we need to solve the system of characteristic ODE with the initial conditions which are 

given here. And we get solutions as this, x is t + s; y is t + s + s square; z = 1 – e power – t + e 



power – t sin s, fine. Now we need to find the t and s as functions of x and y using the first 2 

equations, x = t + s and y is = t + s + s square. It is not clear to me how to get it, but let us ask 

whether it is possible to get at all.  

 

So, therefore, here it looks like it is possible to get. So, t + s is actually x, therefore, x square 

is equal to y – x, therefore, s = root y – x, because s is positive that I am not taking minus so, 

root y – x. So, once you know s, t can be obtained from here x – s that is where x – root y – x. 

So, it is possible to get. And then substitute for t and s in this formula for z, you will get a 

solution. It is the solution.  

 

And now question is, we have got the formula, ask what is the domain on which it is defined? 

First of all, you need that y – x should be positive because it is square root that is it. 

Everything else is fine. So, y – x is positive that is the restriction which is y is bigger than x. 

So, that means it defines a solution in this domain x y in R 2 such that y is bigger than x.  
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So, this is the integral surface. It is in blue. Datum curve is in green. So, along this line, y = x, 

the formula has a problem, right? So, you will see that corresponding trouble here when y = x 

on the line y = x.  
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Let us look at another example. In this example, what is happening is u x + 3 y power 2 by 3 

u y = 2. Now, a is 1, b is 3 y power 2 by 3, this is not a C 1 function. Our theorem requires C 

1 function, right? It is not a C 1 function. Let us see what happens. c, of course, is 2, constant, 

no problem. Cauchy data is u of x 1 = 1 + x. So, first thing as always is to write gamma in the 

parametric form, is this and characteristic system of ODE is this. Now, we need to solve the 

system of ODE with initial conditions.  
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This solution is this x = t + s; y = t + 1 whole cube, z = 2 t + s + 1. Now, for the first 2 

equations, we get t = y power 1 by 3 – 1 and s = x + 1 – y power 1 by 3. In fact, for t, you use 

this equation, because it does not have s. So, from here, we get t; once you get t, substitute 

here, we get for s that is why we got this. Now, go back and substitute in this formula, x + y 

power 1 by 3.  



 

And where is it defined? It is defined everywhere. But then actually ever R 2 because this is 

just cube root of y. Cube root of any real number makes sense. But the problem here is that it 

is not differentiable at y = 0. So, we have to choose either y positive or y negative. We have 

chosen y positive.  
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And these are the views of the integral surface with the different orientations. Remember, 

always the axis, red is x, green is y and the blue is z axis. So, you see that some steeping is 

happening here, around y = 0; should happen, because y power 1 by 3 is there. It is not 

differentiable. Something, it should be reflected in the picture.  
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Let us look at another example. This is a very non standard example. This was constructed 

with something else in mind. And but it turned out to be, it is a very good example. It is in 

Quasilinear equation. So far, we have considered only a linear equation. This is Quasilinear 

equation. sin u u x + u y = 0. Here a and b, a is sin u. If a is 0, b should be nonzero, but b is 

always 1. So, it is, a square + b square is nonzero, fine.  

 

Cauchy data given is u of 0 y = y for all y in R that is all. Parameterize a Cauchy data, 0, s, s; 

s in R. Characteristic system of ODE is this. Now, because of the Quasilinear nature, 

equation for x actually involves z now, whereas y and z does not involve any other variables. 

So from here, you can see that along in characteristic curve, z is constant because dz by dt is 

0 and what is; dy by dt = 1 means y = t plus constant.  

 

Therefore, because a t = 0 should be s, y is t + s, z is constant and that constant has to be s. 

Therefore, you put the s here and integrate this.  
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So, we get sin s into t and t = 0, it should be 0. So, this is a solution. y is t + s, z is s. Now, 

using x and y equations, we have to get an expression for t and s. But, you see, I do not think, 

it is possible because t sin s is there. This is t + s. So, this is okay nice t + s but there is a sin 

here. So, we cannot express, I cannot express explicitly, then I asked, is it possible for 

anybody to express at all? Which means, is the inverse function theorem applicable?  

 

We will check that. This was not the case so far. In all earlier cases, we could solve, maybe it 

is a bad function of x and y; it does not matter, but we could explicitly solve. Here explicitly, 



we are not able to solve, fine. So, to know if a solution exists, we have to rely on the 

existence uniqueness theorem. Now, we have no choice.  
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So, in this example, we are not going to get explicit form of the solution because we are 

unable to inverter. We are unable to write t and s as functions of x y. So, when you look at the 

whether it is possible at all, the J 0 s turns out to be sin s. Of course, sin s is 0, whenever s is a 

multiple of I, all integral multiples of I. Other than that, it is always nonzero. So, if s is equal 

to k I for some k integer, this Jacobian is 0. 

 

If it is not like a pair for some k, then is always nonzero. These are all isolated points. So, 

Jacobean if you remember, we have pointed out the ways of failure of transversality 

condition and there, we said that it is a possibility that you have a sequence s n along which J 

is 0, but here and converging to some point. Here, it is not happening. These are all isolated 

points. There is no convergent subsequence of these multiples of I.  

 

Otherwise, Jacobean is nonzero. Therefore, local existence and uniqueness theorem is 

applicable whenever s is not a multiple of I. So, in terms of y 0, y 0 is not an integral multiple 

of I. And we conclude that there exists an integral surface for a given PDE containing P 0 and 

a piece of gamma. Of course, question remains what happens when s is an integral multiple 

of I that is to be explored.  
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So, now, let us look at some examples which illustrate the local nature of solutions to the 

Cauchy problem.  
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Before that, let us revise the notion of local solution. In initial value problems for ODEs, this 

is the equation, we consider dy by dx = f of x, y and y x 0 = y 0, this is initial condition. So, 

both equation and initial condition together is called initial value problem called IVP in short. 

Of course, we need to assume something on f. Let us assume that f is a continuous function.  

 

Now, a solution to the IVP which is defined on the interval I is called global solution. What is 

I? I is here. This ODE makes sense for x in I. And if you are a solution, which is different for 

every x in I, we call it global solution. Imagine, it is not the case and solution is defined only 

on a subinterval of I, the proper subinterval of I, then that is called local solution. Now, recall 



that Peano’s theorem and Cauchy Lipschitz Picard’s theorem whenever it is applicable, 

always guarantee the existence of a local solution to IVP.  

(Refer Slide Time: 13:55) 

 

They do not talk about global existence. There are other theorems about global existence and 

there is a full understanding of what happens if a local solution can be extended to make it a 

global solution. If you fail somewhere, what are the precise reasons? Why you cannot extend 

it to a global solution? So, that is very much understood for initial value problems or ODEs, 

but that is not the case in my opinion for partial differential equations, I have not come across 

such results.  

 

Let us now define for partial differential equations. A solution to a Cauchy problem for a 

Quasilinear equation, it can be for any equation, first order PDE because we are in this first 

order PDE setup and these are tutorial on Quasilinear equations, we can as well assume for 

Quasilinear equations, otherwise concepts are quite general. So, a solution to a Cauchy 

problem is said to be a global solution if, this is where something comes with respect to 

datum curve.  

 

If the corresponding integral surface contains the entire datum curve, you have a solution. 

Then look at the integral surface z = dx y, entire gamma if it is on that, we say the global 

solution with respect to datum curve. Otherwise, the solution is called local solution with 

respect to datum curve. We have another related notion, a solution to Cauchy problem is said 

to be a global solution with respect to domain, with respect to domain if the solution is 

defined on the domain omega 2.  



 

What is omega 2? Omega 3 is the set on which the Quasilinear equation was defined, the 

coefficients a b c. They are defined on omega 3. Projection of omega 3 to x y plane is omega 

2. So, you would expect that solution should be defined throughout omega 2. If it is so, we 

are happy and we will call it global solution with respect to domain. Otherwise, solution is 

called local solution with respect to domain.  

 

Recall the existence and uniqueness theorem proved in lectures 2.6 and 2.7, they guarantee, 

the theorem guarantees the existence of a local solution with respect to datum current and 

with respect to domain, both.  
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Now, since gamma 2 is a subset of omega 2, if a solution to the Cauchy problem is global 

with respect to domain that means, it is defined throughout omega 2, it is also different to a 

gamma 2; gamma 2 is a projection of gamma. So, it should be global with respect to datum 

curve. Observed that if a solution to the; Cauchy problem is local with respect to datum 

curve, then it is also local with respect to domain.  
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Now, this remark applicable for semilinear equations. Recall that the base characteristic 

curves are defined as projection to omega 2 of the characteristic curves in omega 3 in the 

context of general Quasilinear equation. But in a semilinear equation, what happens is that 

base characteristic curves can be found out independent of the characteristic curves because 

the equations governing the base characteristic curves namely dx by dt = a and dy by dt = b 

involve only x and y; a and b are functions of x y only. It does not depend on z.  

 

Therefore, base characters can be found independent of characteristic curves. Now, we 

observed in step 2 in namely in the proof of the existence uniqueness theorem, there, we 

observed that the equation for z may not admit solutions for all t for which base 

characteristics are defined simply because the dz by dt is a nonlinear equation. For a general 

semilinear equation, dz by dt is a nonlinear equation and solutions to nonlinear equations, as 

we said, as a rule are only local solutions.  

 

So, it can even cut out some portion of this base characteristic curves. So, this might result in 

a situation where projection of a characteristic curve may not be the entire base characteristic 

curve that you already found otherwise. Let us assume all these curves are the longest 

possible things that we have found. We will see an example. It would be obvious.  
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So, the next example exhibits this possibility. u x + u y = u square and Cauchy data is u x 0 = 

x. I think, this is the simplest complicated semilinear equation, because u square is the first 

equation that we learn even in ODE dy by dx = y square. That is the first nonlinear equation 

that we will come across in first order ODEs. So, let us parameterize a given Cauchy data. x 

= s, y = 0, z = s, s in R.  

 

The characteristic system of ODE is dx by dt = 1, dy by dt = 1, dz by dt = x square. Now, 

when we compute the base characteristics, x = x of t s = t + s. Because it is t plus constant, it 

has to be t + s. y is just t.  
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Of course, Z also can be integrated, we get 1 by s – t. From the first 2 equations, we can solve 

for t and s in terms of x and y. Because these are just linear equations, very easy to solve, u 



equal to this, 1 by x – 2 y. It is defined on the domain whenever x – 2y is nonzero. So, we 

have to stick to one of them. Because I do not want my domain x = 2 y happening. So, x is 

greater than 2y one option; x is less than 2y is another option, but when x is greater than 2y, I 

take x positive or x is less than 2y, I take x negative.  

 

Why is that? Because only this domain is in contact with the datum curve on which, datum 

curve, a projection of the datum curve is intersecting only this part or this part. It is not 

intersecting uniformly x bigger than 2y.  
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Now, both solutions are local with respect to datum curve solutions, so, local solution with 

respect to datum curve. Observed that base characteristics are the family of straight lines x = 

y + s. See here, y = t. So, y + x, x – y = s that is a family of base characteristics and they fill 

entire claim. Still Cauchy problem does not have a global with respect to domain. Forgot 

about it. Even with respect to datum curve does not have a global solution. So, this is a 

manifestation of the non linearity in the right hand side namely, u square in the PDE.  
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Let us look at example 6. Here, we consider 2 Cauchy problems for the linear PDE. Linear 

PDE, minus y u x + x u y = 0 post, of course, I do not want coefficients x and y to vanish 

simultaneously, which happens at the origin. So, I remove the origin. On that domain I 

consider this equation and the characteristics system of ODE can directly write down and 

base characteristics because of this nature, dx by dt is minus y and dy dt is x.  

 

So, if you compute one more derivative, d 2 x by dt square is minus dy by dt that is equal to 

minus x. Therefore, dy dx by dt square + x = 0. Similarly, one can do with y. So, solutions of 

x and y are going to be solutions of y double dash + y = 0, which are combination of cosine 

and sine. And the trajectories will be circles. So, base characteristics are the family of circles 

x square + y square = c square.  

 

Since, it is positive number, we write c square because we do not want write true c in some 

other place, so, we write c square and always make sure make mention this that c is positive. 

So, that we do not get confused later. Now, the equation for z implies that any solution to the 

PDE is constant along each of the base characteristics because z is constant. dx by dt is 0 on 

solutions of this that means on each circle, the solution is constant.  
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So, if you know at one point on the circle, what is the value of the solution? Then it is the 

same constant throughout on the circle. Cauchy data 1, we consider x = s, y = 0, z = s and s, 

R – 0. This is not that what we like but it is okay. We continue with this the computation. 

Gamma is not curve obviously, it is 2 pieces. But never mind, I just for now, I guess one can 

create similar conditions, but then they look more complicated than this, this is very easy for 

computation.  

 

So, let me allow me this. So, I am going to compute with this. So, this is the initial conditions 

and then solutions as I said, cos t, sin t the feature and z is s. Now, from the first 2 equations 

for positive s, I can eliminate or I can express, I think, I should not use a word eliminate, I 

can express s and t in terms of x and y, I get this and for s negative, I get this expression for s 

that is why negative, for s negative, positive; for s positive, t remains same.  
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So, in both the cases, the function s and t are not defined at points, where x is 0, because 

when x is 0, there is a trouble which not defined. So, since z = s, the solution is given by u x y 

= s x y. Therefore, u x y equal to this if x is negative, x positive. Now, it is defined on R 2 – x 

axis and all points of gamma lie on the corresponding integral surface. So, this is global with 

respect to datum curve, not global with respect to domain because it is not defined 

everywhere and R 2 – 0,0. No, it is defined R 2 minus x axis.  
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Now, another function v defined on entire domain R 2 – 0, 0 given by this formula, it is also 

PDE, a problem is; it is not a solution to the Cauchy problem, why? For x in R – 0, v x 0 is 

root x square that is mod x on one hand, but v x 0 has to be x on the other hand because that 

is the initial condition. So, both cannot happen. Particularly for x negative, it is not possible. 



So, it is not a solution to the Cauchy problem throughout. Yes, if you restrict for x positive 

side, then yes. 

(Refer Slide Time: 25:00) 

 

Cauchy data 2: Here, we look at x = s, y = 0, z = h s. So, it is like a correction for the 

previous thing. Here, mod x is an even function. And here given data is not even function that 

is why there is a problem. So, now I am going to change it to even function, h s, where s is an 

even function. Still the same problem, but again, I just same procedure as above, we get u x y 

equal to a function h of root x square + y square. This is defined whenever x y is different 

from origin and a smooth function.  

 

If h is differentiable C 1 function, then this being a composition of C 1 functions, it is C 1 

function and it will give a solution. See, now, u x 0 is h of mod x and that is equal to h s 

because it is an even function. Thus, Cauchy problem has a solution defined on R 2 minus 

origin. So, it has a global with respect to domain solution therefore, global with respect to 

datum well. Solution is global with respect to both.  

(Refer Slide Time: 26:11) 



 

So, let us summarise. Many Cauchy problems are solved using methods of characteristics. 

Understood the local nature of solutions to first order PDEs; this, we understood local nature 

can be in the sense, two different senses. One is with respect to the datum curve. Another is 

with respect to the domain. Of course, through 2 examples, we have understood. And reasons 

are different in each of these examples.  

 

And in a forthcoming lecture, an example of a Cauchy problem for Burgers equation will be 

studied. In that example, the local nature of a solution arises due to intersecting base 

characteristics that we will see in a forthcoming lecture.  
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So, with this, we come to the end of Quasilinear equations. And we will then start with the 

general nonlinear equation once again Cauchy problem. We will be making regular 



comparison to what we did in the Cauchy problem for Quasilinear equations. You might say 

that Cauchy linear equation is a special case of a general equation. Why do 2 times? Why 

repeation? Why do not you do the general thing first?  

 

No, because, Quasilinear equation always, when you do not understand something, you 

would like to understand with a special case, Quasilinear is one such special case where 

things are easily understood. Now, we try to extend these ideas to the general case. That is 

what is the natural progression; in solving problems in mathematics. Thank you.   


