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So today module  7.  So we have been studying various topologies  like induced  topology

especially  compactly  generated  topology and  so  on.  And one  of  the  important  things  in

studying function spaces is the exponential correspondence on the function spaces. Basically

these things were done in part 1 very elaborately. Nevertheless because of the importance of

this part, I will recall them as much as needed for our immediate purpose here.
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So, first let us recall  what is the meaning of this compact open topology on the function

spaces? Given any two topological spaces   and , we will denote by  the space of all



maps from  to , maps means continuous functions from  to . This is given the compact

open topology which has a subbase, corresponding to each compact set  of  and an open

subset  of , you define certain subsets  of  and take all of them as a subbase. 

So, what is this ? It is all continuous functions  from  to  which take  inside ,

that is,  must be inside ; then you put  inside this . You take all such 

okay? They are subsets of  and they form a subbase for a topology on , okay? 

is the set of all function  from  to  such that  is contained inside . A subset  is

open in this topology if and only if it is an arbitrary union of finite intersections of subsets of

the form . i.e.,   and you take the intersection that will

be an open set okay. So, arbitrary union of such things will be also open set. If we take only

finite intersections like that, they will be form a base for this topology, okay? 

There is an obvious map  from  to  given by  going to . If you fix one

, then  going to  is nothing but the -coordinate projection.  I would not like to call it

that way though. Because now you are not thinking of  as a subspace of product space 

taken  number of times. There is also the product topology topology no doubt.  But now we

are concentrating on the so called compact-open-topology. So, if you fix , then  going to

 is obviously continuous even in the product topology. But what is important is that: this

 from  to  is a continuous function. That is what we want to have, okay? That is

the first part of this theorem.
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This map  is aptly called the evaluation map, Okay? What is the hypothesis on  ?   is

locally compact Hausdorff space.  and  could be any two topological spaces. Then the first

part here is that   is continuous. The second part is corresponds to the name `exponential

correspondence'. A function from  to , where  is any topological space is continuous if

and only if  from  to to  is continuous. 

Notice if that  is continuous then  is continuous. Therefore if  is continuous then

the composite is continuous. The point here is in the converse, namely, if the composite is

continuous why  should be continuous? In general it may not be so. The theorem says that it

is continuous under this hypothesis, namely,  is locally compact and Hausdorff.

Proofs are not very difficult. Nevertheless, let us go through them so that you will become

familiar with the concept of this compact open topology and the space  etc.
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So, the first part is to show that  is continuous. Start with an open subset  inside  and you

want to show that  is open in the product space of  and . Take a point  in

. What is the meaning of that? That means  is a continuous function from  to 

and  is inside . But now  is open and  is continuous means that there

is neighborhood of  which is taken inside  by .

But now  is locally compact Hausdorff space. So, we can actually take an open subset  

such that  is inside  contained inside  contained in , and such that  is compact.

Inside  every  open  neighbourhood,  you  can  find  a  compact  neighborhood  by  the  local



compactness hypothesis, okay? So, what is the meaning of this? This means that now 

is contained inside  which is the same thing as saying that  is in .

 is compact,  is open and hence this is actually one an element of the subbase. Therefore,

 is an open subset  , which will be neighborhood of  . Now you

look at  , okay? Take   here and take a point  , then   will be inside  

why? Because  is inside  and hence inside  and  goes inside . Therefore 

will be inside . This proves  is continuous. That is part (a), alright?
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Let  us  go  to  part  (b)  alright?  There  are  two  ways.  One  way  I  already  told  you  if   is

continuous  is continuous the composite with  will be continuous because we have

just proved that   is continuous. So, now let us prove the converse. Okay? Now I assume

that this composite is continuous. Then I want to show that g is continuous. For this, it is

enough to show that   of any of these sub basic open sets   is open, where   is

compact and  is open. Okay?

Take  only  subbasic  open  sets,  inverse  image  of  those  things  are  open  will  mean   is

continuous. Okay? So, let   belonging to   is an arbitrary space you remember. So let

 belongs to . That is the meaning of saying that  is in  of that. We have is

 of   which is equal to   operation on   will be inside   for every

. 



By continuity of , there exists open sets  of  and  respectively, such

that this  is inside  and  is inside , and  of this  is contained

inside . So, this is the continuity of this composite function , okay. Since  is

compact so we can pass on to a finite cover.   is contained in the , because 

covers  as  ranges over all of , since  is compact.

So, I extract a finite subcover for . We call that as . Correspondingly, I take  equal to

intersection  of  these  .  It  follows  that   is  contained

inside  , okay? That just means that   is contained inside  , okay?  Since   is a

neighbourhood of , we are through.

So I have found neighbourhood  here contained in  , which is therefore open.

That proves this exponential correspondence theorem, Okay? Now I have come to the study

of the compactly generated topology.
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The basic problem here is that if  and  are compactly generated, in general, the product

topology need not be compactly generated. Therefore we are looking at situations where this

maybe true. That means to put extra conditions on  and/or  under which this may be true.

However there is no if and only if statements, okay? So we will have to study whatever you

know best we know,  about various conditions okay.

So, the first lemma is: if  is locally compact Hasudorff and  is compactly generated okay?

(By the way, whenever I say compactly generated, all the time I assume the Hausdorffness



also. So, both of them are Hausdorff spaces.) Then   is compactly generated, if and

only if  for  every  compact  subset   of  ,  we have   is  compactly  generated.  This

lemma is only stepping stone for the results to come. 

So, there  is  this  extra  hypothesis  on the factor  .  Remember  locally  compact  Hausdorff

spaces  are  compactly  generated.  So,  this  is  stronger  condition than being  just  compactly

generated okay?
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So a proof of this may be given by point-wise argument, going here going there going there

and  so  on.  But  our  exponential  correspondence  theorem helps  you  in  proving  this  one

somewhat elegantly, okay? Consider this function   from   going to  , [here we

take the product space   and retopologise it  with the weak topology, i.e.,  compatly

generated  topology  and  then  take  the  function  space   with  the  compact  open

topology.  Remember that, we denote the weak topology by writing a suffix .] Define 

operating on  is equal to . Remember  is what? For each  is the function

from  to  which sends  to , okay? So this is the definition of , okay? 

Now look at the evaluation function from  to . The base space in this case,

instead  of  just  ,  is  ,  the exponent  space is  .  So  the evaluation map has  its

domain . Take a function  from  to  and a point  in , okay and

evaluated  at , you get a point in .  Because  is locally compact Hausdorff space,

by the previous theorem,  this evaluation map is continuous, okay?



Now we will look at   operating on  , Okay? This is equal to  

which is equal, by definition if the evaluation map, to  operating on  which is nothing

but . Therefore this composite function is continuous.  

We now use the exponential correspondence theorem, in both directions, in an innovative

way. Of course, we also use the hypothesis that   is compactly generated and  is locally

compact. This much hypothesis we have use okay.

(Refer Slide Time: 18:02)

So, the statement we want to understand is that  is compactly generated. This is true if

and only if the identity map from  to  is continuous. We have seen that the

identity map in the other direction is always continuous.  So, identity map this way is also

continuous iff   is compactly generated, okay? So, the first step is just by definition

itself. 

The second step now is that this statement is equivalent to say that  from  to  is

continuous.  This  is  where  the  exponential  correspondence  is  used,  because  this  map

corresponds to the identity map of  , right?   is the identity of  ,

which is continuous. Therefore  is continuous by the exponential correspondence theorem.

But now this is the same thing as saying that for every compact subset  of , the restriction

of  on , let us call  from  to  is continuous, by the previous lemma,  okay?

So from an arbitrary space , I have come to compact subspaces  of , okay?

 



Now we go back, via exponential correspondence, this is true if and only if for every compact

subset  of , the inclusion map from  to  is continuous. Remember  is

locally compact, and inclusion map corresponds to  

 But then this inclusion map is taking value inside  . The codomain is the larger

space , but the subset  with the subspace topology coincides with the weak

topology . Therefore, this inclusion is continuous iff the identity function from K

cross   to   is  continous,  which  in  turn is  equivalent  to  saying that   is

compactly generated for all compact subsets  of . So this lemma is proved now. 
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So now we keep using it beneficially to prove all these statements (a), (b), (c). They are all

different  statements,  but  somewhat  similar.  Common  hypothesis  is  that   and   are

Hausdorff spaces. Conclusion is   will be compactly generated under any one these

easy to remember conditions.

(a) first condition is both  and  are compact. No problem. The product itself is compact

right? In a compact space, the compactly generated topology is the same topology. The first

part does not need anybody any lemma,  Okay? 

Our final aim is part (c) in which instead of  compact,  is only locally compact. The first

part was obvious. The second is also obvious but will needs some proof. Remember, in the

lemma we  had  the  statement  if  and  only  if  something  happens.  So,  we  will  prove  that

statement to prove part (c) here that is the whole idea. Okay?
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So, let us go through it again. Since   and   are compact so is  . For any compact

space compactly generated topology coincides with the given topology. That is part (a). (b)

follows  from the lemma and (a).  See you start  with the  hypothesis  that   is  compactly

generated and  is compact, okay. Then what you have to do to use the lemma is that  you

take compact subsets  of ;  cross with  is compact and so is compactly generated by part

(a). Since this is true for every compact subset of , the product space  is compactly

generated by the lemma. So, the lemma gives you (b) immediately, okay?

Now we use this (b) and again the lemma.  Now the role of  and  will be interchanged to

show that  is compactly generated, okay? This time by taking compact subsets  of .

Every locally compact or Hausdorff space is compactly generated. Therefore (c) follows from

(b) and the lemma. Interchange the role of  and . That is all a small trick but the true tool

was exponential correspondence. 

So, we have come to a stage where we can now study the topology of CW complexes namely

when you take the product of CW complexes, i.e., when  and  are CW-complexes, there is

a  canonical  way of  getting a  product  CW structure  on  .  The  only problem is  the

topology on , namely the product topology will be, in general, different from the CW

topology, okay? So that is the point we want to study. We will do it next time. Thank you.


