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Since we are going to heavily use the notion of coinduced topology and in particular the so

called compactly generated topology, let us recall a few fundamental facts about them which will

be useful for us throughout the course and especially while dealing with CW-complexes. It may

be recalled that a special case of coinduced topology was introduced as well used in part 1. So,

we assume that you know these things, but let us recall these things in somewhat general fashion.

That is one of the reasons why the module 6 is released to you before module 5---we are going to

use coinduced topology in model 5 okay. Yeah. 
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So, let us begin with the general theorem here, namely, start with a family of topological spaces.

I shall denote them by , because, I want to specifically mention these topologies 's

here.  And look at  a  family of  functions from   to  ,  denoted with  .  These are just  set-

theoretic functions first. I haven't taken any topology on  right now, okay?  

Now, you put  equal to all subsets of   such that for every  , the inverse image under 

belongs to , i.e., inverse image must be an open subset in ,  for every .  is such a collection.

Then the statement is that  is a topology on  with the property that each  is continuous.

Moreover, it is the maximal topology on  with this property.

The  proof  is  very  straightforward  and  elementary.  Straightforward  means  whatever  you're

supposed to do you have then straight, there is no tricky arguments here, okay? 

So, for example, continuity of  follows because  inverse of any member of  is open in 

by the definition of members of . So, it is very clear that if  is a topology on , then

with respect to it, each  is continuous. Verifying that this is a topology and the maximality of

this topology etc. 
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Following the above theorem we now make a new definition. The topology  defined in the

above theorem, is called topology on  coinduced by the collection . To indicate that it has

something to do with this , we'll denote it by  or simply by the shorter notation .

Okay. Most of the time we will consider a special case wherein each  is an inclusion map of the

sets,  to , where  is a big set and all these  are subsets of , with their own topologies.

That is the situation that we want to apply this theorem.  
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So, let  be the union of 's, where each  is a topological space. Let  equal to  be the

topology on  ,  where the family   consists  of all  inclusion maps   from   to  .  I  have

assumed that the union is precisely equal to  here that is a special case here. A subset  of  is



open (or respectively closed) in  if and only if  is open (or closed, respectively) in  for

each . So, this is the first statement of the theorem. 

The second statement says that if you take the disjoint union of ’s then the ordinary union 

will be automatically a quotient set, and the quotient function is a quotient map okay? So, that let

us take the quotient map  which is nothing but inclusion map restricted to each . Given any

, it  belongs to  some   and hence   is  surjective  function.  A surjective  function is  a

quotient function set-theoretically. 

But  now, you  can  give  the  coinduced  topology   on   which  is  nothing  but  the  quotient

topology coming from the disjoint union topology on disjoint union of  ’s.  Recall  that the

disjoint  union  topology  is  nothing  but  the  following:  a  subset  is  open  if  and  only  if  its

intersection with each  is open inside . This disjoint union topology itself is a very special

and simplest case of the coinduced topology. From there, we take an arbitrary union and get this

one okay. Once again verifications of (a) and (b) are very straightforward. 
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You just look at the meaning of , when  is , the inclusion map, it is nothing but exactly

equal to , okay? So, that is (a). And then (b) is an immediate consequence of (a) because

what the definition of quotient topology? Something is open here if and only if its inverse image



in the total disjoint union is open which means intersection with each  is open. So, you get (b)

okay? 

So  now,  we  would  like  to  take  one  more  special  case  in  which  you  can  extend  the

neighborhoods, Okay? 
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For that,  you go back to  the proposition 1.1.  So, here we had this  family of  attaching cells

attached to a  space  .  So,   is  obtained by attaching cells  to   right? Then we had these

extensions of neighborhoods, quite elaborately stated. But there is a very simple extension of this

one that purely topological spaces without any additional structures such as CW complex etc. 
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So, let us see what is this result. Let  contained in  be a closed subset. Suppose  is a subset

of  and  is an open subset of  such that  is inside  okay? Suppose  is an open set in 

such that  is contained inside . Okay? 

Then, there exists an open subset  in  such that  is contained inside  contained inside 

and  intersection  is precisely . What I have done is that for the part of  inside ,  was a

nbd inside , that  gets extended to a neighborhood of  inside the whole of , but contained

inside the given neighborhood . That's the meaning of this  is contained inside . 

So, this is what I mean by extending neighborhoods you can extend the neighborhood, but at the

same time can control it also. That it is not too large. So, it is contained inside an already chosen

open set. Okay? So, this is an ordinary statement for subsets from a closed set from   to  ,

which we can now generalize to a large extent. So, that is what we are doing date. So, the proof

of this one is very straightforward, though it looks somewhat complicated and all that. 

(Added by the reviewer)  The exact statement and the proof has been given in Part-I lemma 2.8

So, we shall skip it. It is also proved in Part-I by giving a counter example, that the next result is

completely wrong. So, we shall skip that also and go directly to theorem 1.7.
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Now we shall study what more relation if at all, is there between the topology on   and the

coinduced topology on  by a family of subspaces, though we may not get a complete answer

here.  Suppose that we start with a topology on  and these 's are subspaces covering , and

you give the coinduced topology   on  . Is there some relation between   and the original

topology on ? This is what we want to study but we are not going to get a complete answer

here okay? But we get a set of sufficient conditions which ensure that the two topologies are

equal. This is the next theorem. 

So, start with  equal to union 's, where each  is given a topology , okay? Assume that

the following compatibility conditions are satisfied, namely:

(CC1): For each pair of indices , the two topologies on  induced from  and  are the

same. So, the subspace topologies on the intersections coming from the two different subsets

must be the same. That is the first condition. The second condition is more generous condition.

(CC2) For each pair ,  is an open subset of both  and . 

You can replace `open subset' by  `closed subset'. So, that is a separate statement: for all of ,

you have to put the same condition okay. So, either you take all of them open or all of them

closed, so, that is (CC2).



Now, let   be the coinduced topology on  with respect to the family , the inclusion

maps of   into  . Then the subspace topology   restricted to   is equal the already given

topology   on  . Moreover,  each   is  open (or closed) in   according to what you have

chosen in condition (CC2). 

So, this is the beginning of our attempt to understand the relation between the two topologies on

. Okay? So, what we did? We started with some topologies one each , gave the coinduced

topology on , and then looked at the subspace topologies on . The question is whether they

are equal to the orginal topologies ?  

If these are subspace topologies on each , then when you go to the intersections what happens?

There will be two different  ways of doing this, namely,  first come to   and then go to  

intersection , or secondly, first come to  here and then go to the intersection. Both of them

will  be subspace topologies from the topology on   and therefore must  coincide.  Therefore

condition (CC1) is a must. However, (CC2) is not a necessary condition.  

This is a generous condition. This will actually imply whatever we want, but whatever we want

may be there without this strong condition okay? So, we have to be somewhat apologetic about

(CC2), which is a bit stronger than necessary. 
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That is  such an affirmative answer condition (CC1) is  a must  it  is  necessary condition. The

second condition is not necessary, but it is sufficient it is it is stronger condition. 
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The proof is very straightforward. We need to check that the original topology   is the same

thing as   restricted to   for each  . By the definition of  ,  each   is  a continuous

function from where to where from original  to . Therefore,  restricted  is

contained inside . Okay? 

Now, let us prove that  is contained inside  restriction , okay? First consider the case when

 is open in both  and . So, we are using the second condition also. Second condition

has two different cases, (1) all of them open (2) all of them closed. So, let us take the case when

 are open in both  and .

To begin with this condition itself will imply that each  is open in . Right? Because fixing

, it is open in the coinduced topology. By its very definition, if intersection with each  must

be open in  and that is what it is. So, each  is open in . But then if  is open in , it will

be open in  also right? Open subset of an open subset is open. If  is an open subset of ,  it is

to open in  also. So then this  is contained inside in  restricted to . Okay? 
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The same way now you can use closedness also. Okay. The second case is now that  is

closed in  for every  implies that  is closed in . Hence each closed subset of  is a closed

subset of  also. Okay? similar proof. Alright? 

So, there are nice theories here about the first question that I raised here, but we will not need

them. So I'm skipping them. 
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Let us now go to another special case of this coinduced topology, namely compactly generated

topology, okay? So, we make a notation here. Take any topological space to start with, okay?



Then look at all  the compact subsets with their induced topologies,  subspace topologies.  So,

there's a family of topological spaces and you look at the inclusion of maps, those maps will

coinduced a topology on . That topology is denoted by . 

This is the classical notation. It referred to the fact that we are taking weak-topology. So, that's

why the notation  .  It  is  considered to  be a  weak topology, weaker  than what? Topology

coinduced by the set of all compact subsets of   okay? So, what is the relation between the

original topology on  and ? That is what we would like to understand. This is going to be

very important. So, please pay your attention to this concept so that you can use it later.

(a) The very first thing to notice that is that identity map from  to  is continuous. 

What is  the meaning of this? Every set which is open in  is already open in  also. So, in

other words, there are more open sets in . So,  is finer than . Though it is called weak

topology, don't be under the impression that it is weaker than the original topology on , it is

actually finer. Okay? 

(b) The Identity map defines a bijection of compact sets in the two topologies. Though there are

more open sets here in the domain,  the set of all compact subsets is the same on either side. That

is the beauty of this weak topology. So, that is part (b) here.

(c) The third property is, the third statement is that if  from  to  is continuous, then the same

map   (but  change the  topologies  on  both  sides  to  weak  topology)  from   to   is  also

continuous, okay?

So, let us see how (a) and (b) work out. Then I will leave (c) to you to work it out. Alright? 
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Recall that a subset  of  is closed in , (I'm just recalling the definition of weak topology

here) if and only if , where  is a compact subset of  is closed in . This should happen

for every compact . That is the meaning of something is closed in , the compactly generated

topology or the topology coinduced by the family of compact sets. 

If  itself is closed in the whole space  intersection with each subspace will be closed in that

subspace. 

In particular intersection with each compact set   is closed in  . Hence   is closed in  .

Okay?  Therefore, this part (a) follows by taking the complements, it is open in  then it is open

in . Okay? Now the second one (b). If  is compact in , we want to show that it's compact

in . But the identity map is continuous, image of a compact sets is compact. Therefore,   is

compact in  also. Excellent! 

The converse is important. Suppose  is a compact subset of , why it is compact in  that is

what you have to show, Yeah?  Let  be a family of subsets of , closed in  and with finite

intersection property. 



(Now,  remember that to show that  is compact, I have to show that intersection of all these set

in  is non-empty, okay? To prove this itself, you have to just appeal to DeMorgan's Law. So, I

am going to use that property.)

Let  be a family of subsets of  closed in  and with finite intersection property. By the very

definition of  , for each   in  ,   is closed in   under the topology induced by the

original topology of . But each  is a subset of  and hence  is equal to  itself. Okay? 

Since   is  compact in the topology induced from the orignal topology on  , it follows that

follows that the intersection of all  in  is non-empty. That is all we wanted to prove, alright? 

  

So, we leave the proof of part (c) to you,  okay? 
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However, let us make this definition now. A space is said to be compactly generated if and only

if this identity map in (a), (which is we have seen is continuous) must be a homeomorphism.

That means that identity map the other way round is also continuous, which just means, in turn,

that the two topologies on  are the same, okay? 
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So, here are two remarks. If you learn them properly, everything with weak topology will be

easy for you. So, what are these remarks? 

(a) Take a compact space  . Then a function   from  to   is continuous if and only if the

same function  from  to  is continuous, okay?  can be any compact space and  could be

any function.

The next one (b) is:  Suppose our  is compactly generated. Then a function  from  to  is

continuous if and only if for every compact subset  of , the restricted function  from  to 

is continuous. 

This fact (b) is going to be the key to understand compactly generated topology and its use in

constructing continuous functions, okay? So, this will be used again and again in the study of

CW-complexes. I have emphasized this one several times. 
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Consider the situation of theorem 1.6. I want to leave this as an exercise to you. Assume that

each   is a Hausdorff space. Prove that   is Hausdorff. It's not very difficult but we have to

workout.  So,  that  is  roughly  what  we  wanted  to  tell  you  about  coinduced  and  compactly

generated topologies, Yes. Thank you. 


