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So, we come to the last module of this course. What is the geometry distinction between

surfaces occurring in the list (ii) and list (iii) namely all those surfaces which are obtained as

connected sums of a number of torus or the are connected sums of a number of projective

spaces. We know that the algebra either homology or the fundamental group distinguishes

them. We have studied them thoroughly.  But  now, we are  asking, what is  the geometric

concept behind this, that is happening here, okay? 

This question brings us to the all important concept of orientability. However, we shall just

touch upon this concept restricting ourselves to the case of triangulated manifolds, with the

classical approach, which in a sense, somewhat turns out to be somewhat weaker than other

approaches okay? 
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So, by an orientation on an -simplex , we mean an equivalence class of labeling the

vertices. That means we are choosing a total order on the vertex set and define two such

ordering to be equivalent  if one is obtainable from the other via an even the permutation

okay? Once there is a labeling, another labeling corresponds to a permutation of the set, if

that permutation is of even, namely the signature of that permutation is , then we identify the

two permutation okay. 

So, it  turns out that there are exactly two such equivalence classes, on a set with  

elements   positive.  Therefore,  there  are  exactly  two  orientations  on  any  simplex.  For

instance,  given any on ordering, select two vertices and interchange their positions, keeping

rest of the vertices undisturbed, that will give you an ordering in the other equivalence class.

So, you would not get any other class. So, an orientation on a simplex means choosing a total

order, upto an even permutation.
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The two possible choices are called orientations opposite to each other. Okay? Suppose you

fix one of them and call it positive orientation, then the other will be negative orientation. It is

just like two square roots of  , viz.,  . Okay, there is nothing like a positive square root

and  a  negative  square  root  of  .  That  is  just  a  joke  okay?  So,  there  is  no  positivity

negativity, but people do use this kind of loose terminologies you must understand that. That

is all okay. Better terminology would be to say that one is the opposite of the other. 

Often an oriented n-simplex is displayed by putting the sequence inside a square bracket such

as   an an oriented  -simplex   which has   vertices.

We  have  followed  this  convention  earlier  in  the  construction  of  the  chain  complex

corresponding to a simplicial complex. 

Sometimes when one of the orientation is preferred for some reason and referred to as a

positive  orientation,  then  the  other  one  is  called  negative  orientation,  or  the  opposite

orientation. Like the anti-clockwise and clockwise orientations. For instance, on the standard

-simplex  ,  where   are  the  standard  basic  elements  of

 is  called the positive orientation. Then the other orientation whatever

you take will be the negative orientation, that is all. 

So, we also use this notation ,  and this notation is justified because of our

integration theory and because of our homology theory okay? We have seen that the -chain

 is null homologous. So, we can use this notation. Integration along this edge



and integration in the opposite direction,  they are  related by this  relation that one is  the

negative of the other. That is the strong reason why this terminology is in vogue. Okay? 
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For  the  sake  of  logical  consistency,  we  shall  introduce  two  orientations  classes  on  -

simplexes also. Here the permutation group is trivial and hence there is no way we can use it.

But just for logical consistency, what we will do is we will declare that each vertex also has

two orientations, namely  and . This is consistant with the algebra that we do, viz.,

the set of all  -chains on a single vertex is an infinite cyclic group and has two generators,

one is the negative of the other.  

Let us now make a definition. Let  be an oriented -simplex. If you take

,  wherein the vertex   is  omitted,  remember  what is this? it  is  -th

-face  of  .  We  now  put  the  correct  sign   along  with  it,  viz.,

 and call it the -th face of  with the induced orientation. It then

follows that the boundary of an oriented simplex is the sum of all its -faces with the

induced orientations.  

For  instance,   is  .  And  for  the  oriented  triangle,

, which tells you how the edges are got by tracing

the boundary of the triangle in the anti-clockwise sense.  
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Let  be a triangulated pseudo -manifold. You know what is pseudo -manifold? First of

all,  it  is  a  simplicial  complex,  and it  satisfies a  particular  fundamental  property  which a

triangulated -manifold satisfies. For example, it is pure of dimension  and every -

simplex is the face of exactly two -simplexes.  

By an orientation on  , we mean a choice of orientation on each  -simplex such that the

orientation induced on a common -face of two of the n simplex (an  face also

called a facet) must be opposite of each other. okay? If you have an orientation on , then 

is called orientable. If you fix an orientation on it then it will be called an oriented pseudo -

manifold.
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So, not all pseudo manifolds may be orientable. This condition is not a trivial one. It turns out

that  given  a  pseudo manifold   its  orientability  depends  just  on  the  homotopy  type  of

underlying topological space okay? This is a deep remark which you will not bother to prove

here, in general, but for surfaces, we have already a proof here. So, I want to indicate that. 
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Let  be a triangulation of a surface. It turns out and easy to that  is orientable if and only

if there exists a total ordering of the vertices of each  -simplex in  (which is the same as

choosing  orientation  on  each  -simplex)  such  that  whenever   are  two  adjacent  -

simplices, the two ordering on them are compatible (this is the word I want to use in the

following sense) i.e.,  the induced orderings coming from  on the common edge must be

opposite of each other. That is just reformulating the above general definition, in this special

case. I am just recalling this definition here in this special case. The word `compatible' is

used in this sense. 
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Note that every triangulated, convex polydedron  in  is orientable okay? This is not very

difficult to see. For  or  , it is totally obvious, okay, it can also be seen that there are

exactly  orientations on , Okay? In , for instance you can follow the convention that all 

-simplexes  are  oriented  anticlockwise.  That  will  automatically  satisfy  the  compatibility

condition. The same thing you can do in  also. 

For a general  pseudo  -manifold, what you can try do is  that you start with one simplex

whichever order you want. Then look at any one of the facets with the induced orientation.

There is exactly one other -simplex of which it is a facet and that -simplex has exactly one

extra vertex. So, you can change the orientation of the facet and extend that orientation over

to the  -simplex in a unique way. Keep going on like this till you hit upon a -simplex of

which more than one facets are already carry orientations induced by the orientations of  -

simplexes that you have fixed so far. It is then not clear whether there will be a compatible

way of extending all these to an orientation of that -simplex. That is the problem.  
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So now, I am making a different definition here. A convex polygon in  is always orientable

right? I  am taking a canonical  polygon what  is  a canonical  polygon? Canonical  polygon

means that there is a sequence of edges on the boundary such that each edge is identified with

exactly  one other edge. So we have edge pairs remember that,  that is  the definition of a

canonical  polygon. So, a canonical polygon is said to be orientable if  and only if all  the

identifications namely pair wise identifications of the edges are orientation reversing okay?

That is the definition of a canonical polygon to be orientable okay? (So, this definition can be

taken in any in   also instead of polygon.) In dimension  , this can be reformulated as

follows. A canonical polygon  is orientable if and only it has no edge pairs of type II. That

means no edge is identified with another edge by an orientation preserving isomorphism.

Why this artificial looking definition? You will see that this is the correct one for us, to go

about. Okay? 
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So, this is a theorem. Let   be a triangulated surface, okay? And let   be the triangulated

canonical polygon associated to . Then  as a triangulated surface is orientable if and only

if  as a canonical polygon is orientable. So this is the theorem. This is what made us make

this definition okay. 
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So, how does it work? Indeed, we take the standard orientation on each simplex in . Since

the quotient map  from  to   is bijective on each simplex, and defines a bijection of  -

simplexes in  and , all that we do is to put the order defined by   itself one  for each

 in .  

Given a triangulated surface , let  be the triangulated canonical polygon associated to it

you got my point. So, to start with we can fix an orientation on this convex polygon then pass



the ordering of the vertices of each simplex down to  via the quotient map  from  to .

Clearly for all edges in  which are images of some interior edges , there is no problem of

compatibity, because the same holds inside  already.   

So, the problem is only at the edges , which are images of a pair of boundary edges in .

Okay, if these edge pairs are all of type II, then the 2 orderings on the edge will be the same

coming from 2 different  edges, and that will create  problem, compatibility fails. If on the

other hand all edge pair are of type I then there is no problem okay? Compatibility is over. So

this  is  the  explanation  for  this  theorem Okay.  In  fact,  only after  observing  this  one  has

formulated this theorem okay?
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Note that  if  there is  at least  one edge pair  of  type 2 in a canonical  polygon then in  the

reduction process from a canonical polygon to the normal form, the various steps involved

will never get get rid of a pair of type II. Type 1 pairs are sometimes cancelled out. A type

two II pair may disappear only to to introduce another one of the same type.

So, if a canonical polygon has an edge pair of type II, then its associated normal form will be

in the sublist (iii). Therefore, it follows that original canonical polygon is orientable if and

only if its normal form is orientable. You can also say that the former  is not orientable if the

lattes is not orientable. It is the same thing.
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So, I will give you one more example here. Let us , and . What is

the common edge  right? So, what are the two induced orders. From , when you drop

out , get . From , when you drop out  you get . So these two are

opposite  to  each  other.  So,  the  simplicial  complex  which  is  the  union  of   and   is

orientable.  

Now, suppose these two triangles are taken and you are messing it up namely,  

and   okay? Check that this is not  a compatible ordering. Next check that the

canonical polygon canonical polygons   and   are orientable, whereas  , and

 are not orientable. These canonical polygons respectively define the sphere, the torus,

the projective space and the Klein bottle. 

The simplest surface that is not orientable is the projective space; if allow boundary then it is

the Mobius band. We had some great experience with them in one of the live sessions. The

Mobius band is not orientable you may try to verify this by taking a couple of triangulations

of it.  But such verifications will never prove the assertion, because, one may argue that there

is some other triangulation for which you have not yet verified the same. So, to prove that it

is not orientable you have to have a different device. So, with this definition, it is not that

easy to demonstrate that something is not orientable. So, in the live session we examined

what happen when you the Mobius band. Okay?



On the  other  hand,   you can demonstrate  something is  orientable  by just  producing one

triangulation which is orientable. But to say that underlying space is not orientable that is

rather  difficult  you give  me a  triangulation,  I  can  verify  that  it  is  not  orientable  that  is

possible. But no triangulation is orientable is not easy to alright. So, but here in the case of

surfaces, because of our homology and so on, we have got a complete understanding of the

orientability okay, this is just a lucky part so there it comes so, easily for us. 
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So, let us make an algebraic definition of orientability and then see that, that is a topological

invariant. From there we can deduce all these things. So, what is the definition? Let  be a

connected  compact  -dimensional  manifold  without  boundary,  Okay?  There  is  no

triangulation here now. Earlier we defined orientability using a triangulation. Let us call that

combinatorial orientation. Now we want to define algebraic orientation okay? So, we say 

is orientable if and only if the second homology of  , with respect to integer coefficients,

, is isomorphic to . This looks like very artificial definition, but this is motivated

by the geometry of surfaces. And this definition can be taken for all manifolds not only just

surfaces. Instead of  here, you put  here. That definition is very strong. Of course, it can

be further generalized.  
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So, since, we are assuming that every surface  is triangulable, okay? (not proved that one

okay) it follows from theorem 6.14 and our computation of  , that   is orientable if and

only if it belongs to list (i) (namely, ) or (ii)  namely connected sums of tori. Thus the new

algebraic definition and the old combinatorial definition of orientability coincide here okay?

So, in both cases, the associated canoncial polygon should not have edge pairs of type II. 
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The theorem below just sums it all. Here,  I want to tell you something without using the

triangulation  at  all  okay.  Let   and   be  any  two  compact  connected  -dimensional

topological manifolds without boundary. Then  and  are homeomorphic to each other if

and only if  there  Euler characteristics are  equal  and both are  orientable or  both are non

orientable. 



We have already seen this result. And we have seen that Euler characteristic itself cannot

distinguish between the second series and the third series. Members of the third series can

have same Euler characteristic as some members in the second series. Okay? But put one

more condition: orientability, the second and third series get  distinguished, okay? So, the

proof uses is triangulation. Finally we have a statement without reference to any triangulation

okay? Only Euler characteristic  and orientability will  give you the classification. For the

definition of orientability, we can use the algebraic definition,  must be infinite cyclic. 
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So, let me make a general remark here. In general, consider a smooth manifold  with or

without boundary and compact or non compact.  That  is quite a general  stuff, but for the

smoothness condition, we can talk about orientability in at least 4 different ways. The above

combinatorial one is valid there because a smooth manifold is always triangulable. There is

something called a tangent bundle for a smooth manifold okay? And the concept of orienting

vector bundles,  which gives another definition.  Then there are things called differential  n

forms on , existence of a non trivial differential -form gives yet another definition, okay?

And then finally, of course there is this algebraic definition. Also there are many more. But I

want  to  tell  you  is  that  (at  least  these  four)  all  of  them coincide.  Okay?  The  algebraic

definition  gives  you  that  orientability  is  indeed  a  homotopy  invariant,  whereas,  the

differential  topological  ones  they will  give  you that  orientability  is  only diffeomorphism

invariant. The combinatorial one is the most difficult to handle for invariance, but easy to

perceive,  easy to understand and easy to compute in special cases, but in proving general

theorems, it is difficult okay. So, we have to study that so, that computation and easy to

understand is for that it is it is very helpful. Okay?
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So, here are a few exercises these exercises will be again updated and given to you in the

form of PDF files. Okay? You have to work them out. You have to work out exercises and

some of them you have to submit also. Okay? I have enjoyed lecturing to you. See you some

other time. Thank you.


