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So, today, we shall complete the second part, part B of theorem 6.4. So, recall that theorem

6.4 gives you three sets of canonical polygons. The first one consists of just one member.

This represents the -sphere. The second and third ones give a sequence of members, one for

each natural number  or . So, part B says that any two distinct members belonging to this

list represent surfaces of different homeomorphism classes. So, that is what we have to prove,

that will complete the proof of this theorem. So, let us go back to the today's slides.

We have two methods, two different  proofs, one using cellular homology and other using

fundamental group. Since, we already know the homology of   as well as its fundamental



group, ( ), we have to consider only the list (ii) and list (iii) for this purpose. Both

the proofs will give a very special CW structure on the surface. Namely the one which is

induced by the canonical polygon itself. This CW-structure has just one vertex which is the

image of all vertices of , under the quotient map  from  to . Right? So, that is what we

have seen. 
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So, the -skeleton of  is just a single vertex. What the -cells? They are the images of the

boundary edges of  , each edge becomes a circle below in  , because only the two end

points get identified. So, how many of them are there? They are  in number where  in

the case of (ii) and equal to  in case of (iii) respectively, because edges in the boundary of

 are identified pair-wise. Therefore , the 1-skeleton of  is nothing but a wedge of -

circles,  a  bouquet of   circles you can call.  Now, since   is  homeomorphic  ,  being a

convex polygon in , its image defines a -cell in  which covers the entire of . What is

that attaching map here.?  The quotient map  restricted the boundary of  , and the whole

thing  goes  into  .  So  this  describes  the  CW structure  on  .  We shall  use  this  CW-

structure for both methods. 
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So in the first method, let us compute the singular homology Okay? So I repeat in this proof,

we compute the homology groups of   and show that the listed things in the theorem 6.4

have all different homology groups. In case (i), anyway,  is  and we do not have to worry

about that. So,  is  and  is . 
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For the case (ii) and (iii), we use the elaborate CW-structure given by the canonical polygons,

as  described  above.  The  singular  homology  can  be  computed  using  the  cellular  chain

complex,  .  So,   will be the infinite cyclic group generated by the single

vertex.   is the free abelian group generated by   circles, and so, this is  .   is again

infinite cyclic generated by the single  -cell which is the image of  . So, the entire chain

complex looks like . So, it remains to determine what are these boundary

operators  and , okay? 



So, let us go through this one. Since each  -cell is attached to the same single vertex, the

boundary operator  maps each generator to  and hence is identically zero, okay? 

What  happens  to  ?  The generator  of   are  represented  by the entire  boundary in  the

relative homology of . And the attaching map is the quotient map  restricted

to the boundary, which traces each of the  circles twice. 

In  case  (ii),  the  tracing  is  done  once  in  each  direction,  so  the  degree  of  the  projection

composed  onto each circle is . It follows that  is identically . It follows that  is

 and  is .
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Let us see what happens in case (iii). Here, the   traces each circle twice but in the same

direction. Therefore the degree of the projection composed  is , for each circle. Therefore 

is injective and its image is twice the sum of all the generators. It follows that   is

 and  . Now just by looking at  , you will see that they are all

distinct for each member in the list. That completes a proof of part (B). 

Nonetheless, you can  also keep in mind that all members of (ii) and (iii) are distinguished by

 itself. In (ii), all of them have  infinite cyclic whereas in (iii) all of them have  equal

to .  However, in (i) also we have  infinite cyclic. This property corresponds to the

geometric  notion  of  orientability,  which  we  take  as  definition  of  orientability,  here.

Accordingly, all memebrs in (iii) are non orientable. This fact is also recognized by  viz.,

a surface is orientable iff its  has no 2 torsion.  



Since homology is a homotopy invariant, we actually get a stronger conclusion here, viz.,  the

list in the theorem gives distinct spaces even upto homotopy type. For topological spaces,

singular homology is a topological invariant, it is also a homotopy invariant. Let us see now,

just for fun,  another proof of part (B) which is even simpler than this proof.  Okay? Though

it gives you less information apparently, but the statement here is much more stronger for

some other reason. We also keep in mind that third series   is   the second series   is

infinite cyclic. 
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So,  we  can  now introduce  a  notation  before  going  to  the  second  proof.   denotes  the

members of (ii) and  denotes the members of (iii). Of course we can use  to denote (i)

i.e,   as well. It follows that   is the connected sum of   copies of   which is the

torus. Likewise  is nothing but the projective space and  is the connected sum of  copies

of  . We have also proved that   is nothing but the Klein bottle, okay? These are sum

familiar surfaces.
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Incidentally what we have proved is that  and  Go back here

and see in case (iii) the ranks of  and  are respecitively,   and . Therefore

. Likewise, in (ii) the ranks of  and  are resectively, are  and .

Therefore,  within  each  series,  just  the  Euler  charactristic  is  enough  to  distinguish  the

members. Unfortunately, it will not work across the two series. Members of both first series

and second series may have the same Euler characteristic where if  .  So, there are

elements here which have same Euler characteristics. Alright. So Euler characteristic together

with orientability will distinguish surfaces.  
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Now, let us go to the second proof using the fundamental group. Clearly the fundamental

group of a surface can also be easily determined by the CW-structure described above given

by the canonical polygon. Since the -skeleton is a bouquet of  circles, its fundamental group

is a free group with bases consisting of one generator for each circle. This we have computed



several  times.  In  the  case  (ii),  let  these  generators  be  denoted  by  the  letters  

corresponding to the image of the edges   respectively,  . It follows that the

attaching map of the -cell represents the element , the product of the

commutators , taken in that order. Therefore, the fundamental group of

 is the quotient of the free group by the normal subgroup generated by this one element . 
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Let us see what happens in the case (iii). Here we may use the notation for the generators for

 to be , corresponding to the image of the edges . Then the  attaching

map of the -cell represents the element , the product taken in that order and the

fundamental group of  is the quotient of the free group by the normal subgroup generated

by . Any way we also know that   the trivial group. 
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This we have summed up in theorem 6.15 below. This is the standard way of writing a group

given by generators and relations. The first one is  That means trivial group. (ii)

 is generated by  and then there is a vertical separator here you know

a divider line and next to it we write the elements which generate the normal subgroup. In

this case, it is the product of the commutators  . And then entire thing put inside this

angular brackets. 

(iii) Here   is generated by   elements   and there is just one relation

, okay? So, this is the theorem that we have deduced from our knowledge of the

CW-complex structure given by a canonical polygon on .  

I want to say that this is enough now, to distinguish these members. The first one, in (i) the

fundamental group here is trivial. In any of these other cases it will not be trivial. Why? What

you are going to do here? Why the quotient of this free group by the normal subgroup is non

trivial? Just take the abelianization of this group. As soon as you go to the abelianization, the

image of the generators commute. 

Thereore  in  (ii),  the  product  of  the  commutators  becomes  the  trivial  element.  The

abelianization  of  a  free  group  is  a  free  abelian  group  of  the  same  rank.  Therefore  the

abelianzation of the quotient is now equal to the quotient of the free abelian group by the

trivial group and is is equal to the free abelian group itself, which is actually of rank  .

Simialrly, in (iii) the abelianization of   is nothing but the quotient of free abelian group

over  modulo the element . This much information is enough

to distinguish the members of the entire list. 

Indeed, this is another way of computing , because we have seen that the abelianization of

 is nothing but .
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That completes two of  the proofs of part (B).  We can give yet  another proof by putting

directly  a  simplicial  structure  on   and  using  simplicial  homology,  which  is  not  much

different but more complicated. So, we shall skip that proof. Now, I have a few comments to

make.
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Note that  this second proof does  not  use explicitly the information on  .  Of course all

spaces  are  connected  and  hence   gives  you  nothing  special.  However,   detects

orientability of a surface.  The same can be detected by  , namely existence of  -torsion

elements is equivalent to non orientability of the surface. 

So,  the  fact  that  just  the  fundamental  group  of  the  surface  is  enough  to  determine  the

homotopy type is a small surprise. Actually even the diffeomorphism type can be determined

though we have not proved it here. This is attributed to a deeper property of surfaces namely,



barring just two cases  or , in which case, the fundamental groups are finite, all

other fundamental groups are infinite and all connected closed surfaces have the universal

covering  space  either  the  complex  plane  or  the  upper  half  plane,  both  of  which  are

contractible. So, all surfaces except two are covered by contractible spaces. That is something

very special.

However, whatever I have stated just now is not at all obvious. Only for torus and the Klein

bottle, we can easily see that the universal cover is the complex plane. For all those double

torus, triple torus etc,  there are no easy methods to detect their universal covers. Of course, it

is all classical result but the only way so far is to use deep function theory of one complex

variable.  You have to use the group   and its  action on the upper half plane via

Mobius transformations, a very very entertaining and rich source of mathematical literature. 
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You can ask whether such a result is true in higher dimensional manifolds, namely, suppose

we have a -manifold  covered by a contractible space. Even more restricted way, let us say

it is covered by an Euclidean space.  Is the homeomorphism type of   determined by the

fundamental group? This problem goes under the name Borel’s conjecture. It is at least 50

year old conjecture, which has been verified in every known case. A complete solution is yet

to come. Okay? For more details, you can see Farrell[2002] which is there in ICTP notes. 
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It is not hard to obtain classification all compact connected -manifolds with the boundary as

well. Recall so far we have taken only boundaryless case. How do you go about it? Because it

is compact there will be only finitely many boundary components. What are these boundary

components?  Each  boundary  component  is  a  connected  -dimensional  compact  manifold

which does not have any boundary, and therefore it must be the circle.  In each of the circle,

you can just put a  -disc and obtain a connected  -manifold which has no boundary. This

operation is called `capping of boundary spheres'.  Thus, in principle, any compact manifold

with boundary is got by starting with a corresponding manifold without boundary and then

making a number of holes in it by removing small disks disjoint from each other, okay? So,

this is the picture for all compact -manifolds. 
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Now, the passage from compact to non compactness. That is a different game altogether. In

dimension 1, we did not have so much of trouble in the proof of classification of -manifolds.



However, non compact manifolds of dimension  are still not well understood at all. People

are trying to claim partial results here, partial results there, claims and counter-claims are

going on. Even the classification of homeomorphism types of all open subsets of   is not

known. Like this by putting additional conditions, by restricting the classes,  some people

have obtained positive results. So, you can also try your hand. Of course, first you look into

the literature for whatever is known and try to go ahead okay? 

So, that brings us to the end of this theorem, the classification of surfaces. Next time we shall

consider yet another concept, which  will be the last module in this course. Thank you. 


