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So, having seen a number of examples of CW complexes we return to the more elaborate

study of topological properties of CW complexes. 
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To start with a CW complex  then  is the k-th skeleton of , namely,  union of all cells

of dimension less than or equal to , right?  Each skeleton  is a closed subset of . This

is the first statement. 



The second statement is: each closed cell is also a closed subset of . A closed cell is not just

a name, but it refers to the closeness of the underlying set in . 

A subset  of  is closed if and only if  intersects each closed cell  of  in a closed subset

of . In particular, this means that the topology on  is compactly generated. So, these are

the 4 observations you want to make about the topology of CW complex okay? Remember a

subset  is  closed in   if  and only if  it  intersects  each skeleton in a closed set  that is  the

definition of the topology on , right? If  itself is actually a skeleton then we do not need

this definition because each skeleton   is obtained by attaching  -cells  to  , and

therefore,  the  topology  is  well  defined  there  as  a  quotient  topology  of  a  certain  object.

Alright.  So,  this  definition  this  statement  statement  (c)  or  (d)   are  needed  only  when

dimension of  is infinite. 

So,  first  of  all  each   is  a  closed  subset  of  .  How do you see that?  Look at  

intersection with .  If  , then this is just . If  it is . So, either it is 

or , they are closed subsets is what I have to show, right?  Now, if  is contained in

 i.e,  ,  we  know that   is  obtained  by  attaching  cells  to   of  dimension

 and so on upto .  When you attach cells to a space  to get , we have seen that

 is a closed subset of , okay? So, successively  will be closed subset of  closed

in  and so on, it follows that  is closed in , if . So, you can interchange 

and  roles to conclude that the intersection of  with every other  is closed in .

Therefore,  will be closed in . 

Next one. Each closed cell is a closed subset of . To see that it is enough to show that each

-cell is closed in , because we have already proved that each  is closed in . This

will be done by induction on .

For  ,  if   is  a  discrete  space  and hence each  -cell  is  closed. Moreover,   is

Hausdorff. Inductively, by cor 1.1, it follows that each  is Hausdorff. Since  is compact

it follows that it is closed in .

The next thing: Take a subset   of . One part is obvious. If it is closed in   intersection

with each cell  is closed in .  Now, we have to look at the converse. Given  intersection 

is closed in  for all cells . We want to show that  is closed in  for every .  This



again is done by induction. For  since  is discrete, there is nothing to prove.  Having

proved that   is closed, it follows from Lemma 1.1 (c) that   is closed in

. 

Finally to prove (d): What is the meaning of compactly generated the same thing as instead of

, I have to put a compact set for every compact set of . Take a set , it is closed in  iff

 is closed in  for every compact subset  of . Again we have to show only the `if'

part.  Conversely,  since each closed cell   is  compact  it  follows that   is  closed in  .

Hence, by the previous part it follws that  is closed in .  
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So I will elaborate on that one a little bit later. Right now I say only this much.  If you have

worked out related exercises on attaching cells, then the following theorem will be obvious.

Namely,  if  is Hausdorff/regular/ or normal, then  is Hausdorff/ regular/or normal. That is

what I have given in next slide. Now inductively, you can prove that if  is a Hausdorff space

or a regular space or a normal space then so is , where  is a relative CW complex. In

particular,  every  CW complex is  a  -space.  So, this  is  left  as an exercise for  you now,

having solved that exercise this should be easier. 
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The next one is you should pay attention to this one. It is a very, very important result on CW

complexes,   all the time used, okay? So, what is it? It just says that every CW complex is a

disjoint union of open cells. Do not erroneously conclude that this implies it is disconnected.

`Open cell' is just a name--- they are not open subsets of  , not necessarily, some of them

maybe some of them are not indeed they are open cells if they are maximal, that are no cells

of higher dimension will intersect the interior. Then only they are open in . An open cell, by

definition, is just the interior of  whatever under the image of the quotient map occurring

in the attaching -cells. It is open inside the closed cell, that is all. So, what we have here is:

take all the interior of the cells that will be the union of the entire CW complex.

We have seen similar result in case of simplicial complexes. It is exactly same here and in

fact, much simpler. What is it? First of all,  by the very definition of CW complex, you can

write   as  and so on, a disjoint union. In this notation I

have taken  as the empty set to start with.   is the union of -cells and -cells are

both open and closed. So, all these points belong  which is disjoint union right.? So, we

start with all the -cells, they are open cells Okay? Now, look at  what is it? There

are open -cells and they are disjoint. Any two distinct open -cells are always disjoint. Okay?

So, more generally,   is a disjoint union of open  -cells. Take any  -cell, its

boundary is contained inside  and you are throwing away that. What you are left with

is its interior okay. 

So, this is a totally obvious statement, but this is very useful one. 

(Refer Slide Time: 18:43)



Now, let us see how it is useful. This lemma says take a subset  that contains at the most one

point from each open cell, i.e.,  intersection with an open cell is a singleton or an emptyset.

So, this is the condition on . Such a set is closed automatically and is a discrete subset of ,

okay? If we think a little bit, it is obvious, but now, let me write down the full proof of this

one, okay? There are books and books, which give you long, long proofs of this. 
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So, for myself, I learnt this proof only much later. and then I found out that there are books

which give this proof also.



To show that  is a closed set what you have to do? Intersect with each  and show that it

is closed inside . Start with  is a discrete space every subset is closed that is

fine. Now assume that  is closed in , I have to show that  is closed in

, right? For that what I have to show? By our lemma, it is enough to show that for any

closed -cell  is closed in . This set has at most one extra isolated point in the

interior of , other than the set , which is any way a closed subset of . Since a

singleton is closed in the interior of , we are done.
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We can use this one to prove certain properties that I was telling you about finitely many

cells and so on. That comes now very easily okay? Take any compact subset   of a CW

complex ; it is contained in the union of finitely many open cells. The funny thing here is

that these open cells may not form an open cover for  ,  because they may not be open

subsets of . Yet the conclusion is that  is contained in a finite number of open cells. This

is an easy consequence of the previous lemma okay? Since  itself the union of open cells,

every subset is is contained in the union of open cells right? You start with a compact set .

Suppose you need infinitely many open cells to cover it. That means what? That means there

will be infinitely many points infinitely many open cells, which will intersect  . Pick up 1

point from each of these open cells, only one point which is common with  and for a subset

. Then what will the property of this subset ? This subset  has the same property as in the

previous lemma.  But it  is  a subset  of  .  The previous lemma says that such a subset  is

discrete, but  is a subset of ,  is compact. A discrete subset of a compact set is finite. So,

 could not have infinitely many points like that. Okay? 



So, I repeat if the claim not true what happens?  will intersect infinitely open cells which

we know are disjoint. Therefore, I can select 1 point in each such intersection to get a subset

 which is infinite and discrete subset of . That is not possible okay? 
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So,  this  is  an  easy  consequence.  Now the  closure  of  every  cell,  we  know,  is  compact.

Therefore, it meets only finitely many open cells because every compact set intersects only

finitely many open cells. This property that closure of a cell meeting finitely open cells was

called `closure finite' property. Okay? 
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So, this is the remark I wanted to make. Now I am going to elaborate it. I was all the time

referring to the property of a CW-complex known as closure finiteness Okay? that means

what? Closure of every cell will meet only finitely many open cells okay? So, this explains

the presence of the letter C, in CW-complex. `C'  corresponds to the closure finiteness in this

mysterious nomenclature  of  CW-complex.  CW complex  was the name given by J.  H.  C

Whitehead, the creator of this concept.  Historically this property was put as an additional

condition of the definition itself by J. H. C Whitehead. His definition of a CW complex was

very, very long. He had put many of the standard properties which we are discussing now as

a  consequence  in  the definition itself.  Okay? So,  this was one of  the properties,  closure

finiteness which we have just  proved.  We do not need to  put  this extra  condition in the

definition.

By the way, there is this letter W. What is this W corresponding to in the name CW? C

corresponds to closure finite, what is W? W corresponds to the weak topology, the compactly

generated topology okay? That is also called weak topology okay? W corresponds to the

weak topology and so. There is no need for the letter C we have seen that. But the weak

topology part is necessary. Therefore, we could just delete C and kept only W and call them

W-complexes. But nobody has made that kind of suggestion so far. I am alone perhaps. So,

let us not introduce a new name, let us not create a new nomenclature here. Many authors just

call them cell complexes. So, that is a good name okay. But I would say that you better stick

to the name CW-complex, because there are many notions of cell complexes, each author has

his  own  definition  and  sometimes  they  just  differ  slightly  like  someone  may  not  put

Hausdorffness condition, someone may put something else and so on and the structure also

somewhat  different.  So,  let  us  not  bother  about  these  new terminology.  If  you  read  old

papers, then what you will get is this kind of definition.

So, the closure finiteness is a consequence, alright? Actually, the fundamental thing is here is

the quotient space structure in the definition of attaching cells which gives you inductively, a

sequence of topological spaces,  one contained in the other.  itself

is the union as a set and the topology is the one infinity that can be  itself has the topology

or induced by these inclusion maps. You may not directly say that it is compactly generated,

because before talking about compactly generated, you have to have a topology on   and

consider the family of compact subsets of it.  So, all these problems are neatly resolved in the

definition of a CW complex by the author. He designed CW complex you know. Though he



had the correct ideas, many things were not available to him. So, many of these things were

developed much later. So, this was just a great invention by J. H. C Whitehead, after all. 
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Let me now go ahead with the study of topology of CW complexes, in the spirit of our earlier

lemma, of extending the neighbourhoods, which can be deformed and so on. Remember that

lemma or the proposition? Okay. So, I am going to make another such lemma here which will

be useful later in the study of CW complexes. What does it say?

Start with a CW complex. For each , let  be a neighbourhood of  inside  okay?

Let  be a point in the interior of, say, some -cell   and  be an open neighbourhood of

. Note that   need not be open in   but just open in  . Then there exists an open

neighbourhood  of  such that  is  and  is contained in  for

all . 

So, this  which is an open neighbourhood of  gets extended to . Extended means

what? Intersection of   with   is  exactly  .  Also it  is  controlled in the sense that

intersection  with   is  contained  inside  .  It  is  not  becoming  too  big.  This   is  a

neighbourhood of  itself.  in open in  and may not be open inside , Okay? It is

like you have a point on the line and the neighbourhood of that point on the line is like an

interval, but now the interval is contained is , that interval is not open inside , but you

can extend it to an open square and that is precisely what we have done in the first lemma. 



We took an arbitrary subset  of the boundary of  then we extend it to a neighbourhood of

 inside the disk, right? And this elementary construction is going to help us in all this. 
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So, this is Proposition 1.1 that we had for attaching cells Okay? Start with a subset  inside 

. This  gets thickened to , okay? (this  could be chosen at your will) and that  is an

open subset of  iff   is open in , okay? And if you intersect it with , then it is just 

itself. Moreover,  is strong deformation retraction of . This last part is an extra thing,

we do not need this one right now, Okay? All I want at present is the extension of an open set

in  to . So, we have to do an induction, going from  to  and then to  for

which we are going to use this proposition, okay?

(Refer Slide Time: 35:15)

So, by this from the proposition: for each  -cell   is an open subset in  

containing the entire boundary of   because  ’s are neighbourhoods of   for all  , so



they contain the boundary of any simpler -simplex which is a subset of  . When

you take  the  inverse  image under  the  attaching  map,  it  will  contain  the  entire  boundary

sphere. However, I am not going above to the disjoint union at all via these attaching maps

etc.  I am just working in  itself, so, the notations become simpler here okay. So, for each

-cell  ,   is  an open subset  of   containing the entire  boundary which is

actually a subset of  . Since the boundary   is compact.  you can choose   positive,

without any problem, such that  is contained inside . This happens for every

 therefore, you can take , which is equal to a smaller set, namely, , that will

be a subset of . Okay?  Therefore,  of this intersection will be an open subset in

. This is the import of this lemma. Okay? 

So take now take   to be the union of all these  's as done in the proposition. You

should take union of all  these  's,  that  is  going to be an open neighbourhood of  this  

because  is there that will be an open subset of  , it is an open neighbourhood of .

Okay? And its intersection with  is precisely . And  is contained in , The

inductive step is over. Okay? 
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Now what do you do? Just take  equal to union of all the 's with . We start with

 because  happens to be inside one of the -cells. If  is a vertex, i.e.,  a -cell, you would

have taken all these things and greater equal to . Okay, Why this is open? Intersection with

each   is   which is open in  . Why  is contained in  , because   is

contained in . Okay?



So, I call this a control extension. So, we will use this one much later of course, but we will

use that alright. So, we have done quite a bit of topology, but there are many more things to

be done. One of the most important thing is that in CW complexes, the weak topology is

very,  very  useful  in  constructing  continuous  functions  on  CW  complexes  (this  was  the

motivation) and in verifying that some function is continuous. Defining a continuous function

as well as verifying the continuity of a given function on a CW complex structure, the weak

topology is very useful whereas if on an arbitrary space this will be hard. In particular, we

will be able to see that there are lots of continuous function. This will do next time. So today

this is over, thank you.


