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So let us continue with the classification of surfaces. Here is the statement of the theorem. It

has two parts Part A and Part B.

(A)  Every  compact  connected  -dimensional  manifold  without  boundary  (a  surface)  is

homeomorphic to the surface defined by one of the following canonical polygons:

(i) ;

(ii) , where ;

(iii)  , where  . This is part (A) (To be precise, we must add the word

`triangulated' also in the assumptions on the surface, since in the proof we are making this

assumption. However, by Rado theorem which we have not proved of course, every surface

is triangulated and hence in the statement, I have not put that hypothesis.)

(B) Second part says any two distinct members of the above list give you surfaces which are

non homeomorphic.  



In (i)  is a single distinct member. In (ii) there are infinitely many members okay? Indexed

by  . Similarly in (iii)  there are infinitely many members okay? Each one of them is

different from each one of the other from within the sub list as as as from members in the

other two sub lists.  
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So this is the complete classification for surfaces without boundary. The canonical polygons

listed above are said to be in the normal form, okay? When we normalize, uniqueness comes

in. That is the whole idea. The rest of this section will be occupied in proving part (A) of the

theorem which  will  be  achieved  in  five steps.  And then giving   different  proofs  of  the

uniqueness part viz., part (B). 
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Beginning with an arbitrary canonical polygon, it may not be in the normal form, what we

have to do is that we have to `reduce'  it to a normal form and show that it is one of the



members in the list. Clearly each member in the list is a canonical polygon. They are called

canonical polygons in the normal form. So every canonical polygon is reduced or brought

down to ... whatever we want to say ... we have to explain that. `Brought down' means what?

Applying  certain  transformation  process  as  we  have  illustrated  in  the  discussion  of  an

example  last  time  by  transforming   in  to  .  There  may  be  some  other

transformations. They should not change the homeomorphism type of quotient space, we are

allowed to do whatever we like, provided we remain in the same homeomorphism type of the

quotient space. Okay? So that is the whole idea. Okay?

First observe that in (ii) and (iii) all the vertices are identified to a single point, you should

know that. To see this it is enough to check that in the sequences  (similarly in 

), all the vertices get identified. However, in (i), we have  with two vertices which do not

get identified.  
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In a given sequence, if both a letter and its inverse are present, we call such a pair of letters

Type-I pair. Otherwise, i.e., a letter repeats itself with the inverse, then call it type-II okay?

Also while representing a canonical polygon by a picture, instead writing the superscript over

a letter, we shall use arrows which is easier to indicate the direction in which identifications

are taking place. That is all. When you draw a picture it is just letters and arrows. Ok? 
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So this is the first thing we want to achieve our first aim would be to find a reduction process

which will ensure that all vertices are identified to a single point, or we are in the list (i). Now

we need a convenient terminology. 

The simplest thing is to get rid of, to cancel out a pair of edges   occuring inside any

sequence provided the sequence is of length at least , as follows: First write the sequence in

the form  upto cyclic permutation, represent it on the boundary of a half disc as shown

in the figure (36). Now use the doubling map or the folding map  onto the disc to

see that the identification carried on the part  produces full disc with its boundary being

marked by the sequence  . Therefore,  the original surface is replaced by the sequence  

itself.  So, we code this step as follows   (48). 
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By repeated application of this step, we can assume that either the given sequence is as in (i)

or there are no consecutive Type-I pairs in the sequence. (By the way, it is easy to see that

this step can be computerized. Indeed, you may check that the entire reduction process that

we are going to employ can be made algorithmic.) So let us assume that there are no adjacent

Type-I pairs and the length of the sequence is at least . 
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We shall now introduce a process which will cut down the number of vertices in the quotient.

i.e.,  the number of equivalence classes of vertices in  . May be there are more than two

classes. If there is only one class you are done. If there are more than one class consider a

class  which has smallest number of elements in it. Suppose one class has  elements and

another  class  has   elements  and so  on.  Look at  the  class  that  has  the  least  number of

elements. We pick up a vertex  in this class such that the next vertex  in the sequence is

not in this class. Since there are at least two classes of vertices this is possible. (After picking

up a vertex in the class , look at the next one (in the anticlockwise direction) if that is also

in , go further till you hit a vertex which is in a different class.) 
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Let now  be the other vertex adjacent to .  and  are already chosen to be adjacent, so

there is only one choice for   which will be behind  , okay? Now let   and   denote the

edges  and  respectively. See the diagram. We note that  cannot be equal to  because

then  and  would be in the same vertex class. Similarly,   cannot be equal to  either,

because  we  have  assumed  that  there  are  no  consecutive  pairs  of  Type-I.  Therefore  our

notation  for the edge  is justified. 

About the rest of the sequence all you know is that there must be an edge which is labeled

 or  . Accordingly, we may express the entire sequence in the form   with  

nonempty or , with  nonempty. (  may be also non empty but that is not necessary.)

Make a cut  to . Cut out this triangle marked by alpha from the convex polygon. Denote

the edge  by . You have have to put an arrow on this cut here whichever way you like. So

I have put an arrow from  to  okay? The arrow is here. 
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So when I cut out the triangle,  the remaining convex polygon here is marked beta. I am

bringing   down here and place it  so that  the two sides marked   on the two pieces are

matching and then identify them any way. The resulting subspace of  need not be a convex

set, but a polygon. You can deform it,  straighten it out to become a convex polygon that part

is no problem. 
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In the new sequence, the edge  disappears. What I want is that how many vertices are there

in the class   now? Two of the points marked by   have got identified. Therefore in the

new class of , there is one element less. Of course, you can also see that no new class of

vertices has been introduced. 

What may happen is now the new sequence may not satisfy the condition that there are no

consecutive pairs of type-I. If so, perform the I-step as often as needed. This would further



reduce the number of equivalence classes of vertices.  Actually each time some class will

disappear altogether.     

Therefore,  repeated  application  of  these  two  steps  will  keep  reducing  the  number  of

equivalence classes themselves till we hit upon the case (i) or there is only one equivalence

class  of  vertices.  So,  this  step  can  be  coded  as   and

. (49) (So you can computerize this operation also.)
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From now onwards  we will  assume that  our  sequence  has  just  one equivalence  class  of

vertices. and operations that we consider will not disturb this property. Now there are some

other kinds of operations we are bringing in okay? But they will never disturb this property.

Means what? It will not introduce extra vertex classes. Alright, so, next time we shall do the

final reduction and stop here today.


