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Before taking up the last topic namely classification of triangulated compact surfaces,  we

make a few general remarks and on triangulation in particular. A triangulation of a manifold

is  necessarily  more  convenient.  The  combinatorial  structure  gives  more  combinatorial

information on the manifolds. We have made a small beginning of the study of this property.

Besides  theoretical  importance,  it  provides  a  very  good  effective  tool  in  the  study  of

topological  properties  of  manifolds.  For  example,  I  have  told  you  that  one  can  actually

computerise the study of topology through simplicial complexes. 
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The  fundamental  classical  questions  here  are:  Can  every  topological  manifold  be

triangulated? If you cannot do that, you can ask whether all differentiable manifolds can be

triangulated.  Next  question  is  that  given  two  triangulations   and   of  a  topological

manifold, is  combinatorially equivalent to ? Recall that by combinatorial equvivalence

we mean that there are subdivisions  of  and  of  such that the two subdivisions are

simplicially  isomorphic.  Third  question  is  whether  every  triangulated  manifold  carries  a

smooth structure? So, these are the few standard questions. 
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Let us see how much literature we know about these questions. From the classification of -

dimensional manifolds, it easily follows that every  -dimensional manifold is triangulable.

Because the connected components are just open intervals, closed intervals or half closed

intervals or a circles. Each of them you can triangulate, so -manifolds can be triangulated. It

can  also  be  proved  that,  each  -dimensional  topological  manifold  has  a  unique  smooth



structure okay up to diffeomorphism. If you go through the proof of the classification of  -

manifolds, only at a few steps, you will have to improve homeomorphism to diffeomorphism

which will require a little more work, that is all.
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A classical result due to Rado, way back in 1924, almost a century back, says that all  -

dimensional manifolds are triangulable. Though this proof is within our limitations, due to

lack of time, we shall skip it, okay? 
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The triangulability of all -dimensional manifolds is a deeper result due to E. Moise who also

proved that any two triangulations of the same  -manifold are combinatorially equivalent.

That means, as I have just told you, there are subdivisions  of  such that  and  are

isomorphic. By the way, this reference is for his book. His actual papers in which the original

proofs are there, have appeared much before. 
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A theorem due to Cairns in 1935 says that every smooth manifold is triangulable. There is an

improved version of this result in Whitehead[1940] which gives a neater proof and a stronger

result. So, every smooth manifold is triangulable.
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In dimension greater than or equal , there are triangulable manifolds which do not admit any

smooth structure. Every smooth manifold is triangulable. But in the other direction, there are

triangulable manifolds, which do not admit any smooth structure. The first example came in

1960, due to Kervaire and the example was in dimension  . This was soon improved to

dimension  ,  by  Eells  and  Kuiper.  Then  Siebenmann  constructed  an  example  of  a  -

dimensional manifold which cannot be triangulated. With this classical result, we may safely

say that above three questions have been answered satisfactorily. 



Why I am not talking about dimension  ? It is the craziest  dimension among all of them

okay? So, I will not speak about it here. These results are all quite hard and beyond the scope

of this elementary course.
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So, let us make a small beginning today of the study of compact surfaces, we do not intend to

finish it, not even the laying down of a plan of action for the classification. First of all, I will

use the word `surface' just to mean a compact -dimensional, connected, topological manifold

without boundary. So, I will not keep on saying all these properties, just say a surface, okay?

This is just temporary terminology just for another two-three lectures that is all. Okay?
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Next  we fix  a  triangulation on a surface  .  We then appeal  to  our theorem wherein we

constructed a convex triangulated polygon  in , and a quotient map from  onto , right?



So, that is a representation of  as a quotient of a convex polygon  with  sides. What are

the identifications? Identifications are coming only from the boundary sides. (This was not

explicitly proved but the proof of this is simpler than the proof of Poincare's result which we

proved elaborately and the arguments their in proving that the interior points of all edges are

nice will ditto in proving that the vertices are nice in this case.) 

The boundary of , you know, is the union of edges. They are paired out and then inside each

pair, the identification is taking place from one edge to to the other edge in the pair through a

linear homeomorphism. Okay?  
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So, this process can be completely described now, purely combinatorically as if we do not

have any topology there at all. What do we do? We will describe a surface by describing this

quotient map, okay? So, what is the domain? It is a triangulated convex polygon in  with

even number of sides, which are paired off. You take a linear isomorphism from one edge to

the other edge in the pair. There are precisely two such isomorphisms there, just like the case

of linear isomorphisms from a closed interval to a closed interval, okay? There are only two

possibilities depending upon the two bijections of the boundary sets.  

So, let us agree once and for all that we shall trace the boundary of any convex polygon in 

,  in  the  anti-clockwise  direction,  okay?  Like  we  trace  a  circle  in  -different  ways  anti-

clockwise  and  clockwise,  let  us  fix  once  for  all  the  anti-clockwise  direction.  For  actual

tracing, we are free to start from any vertex that we do not fix that, okay? You can start from



any vertex  keep  going to  the  next  one and  so on,  labeling  the  edges  by letters  such  as

 and so on. Okay? 

As soon as we meet an edge which is being identified with an edge that we have already

labelled, we shall not use a different letter to denote it. Instead we shall use the same letter.

That  means,  edges  belonging  to  the  same pair  are  being  labelled  using  the  same  letter.

Suppose I have started with say,  and the next one is identified with . Then I would not

call that edge , I will call it . That takes case of the pairing data.  

But now, I have one another stronger concern. In the orientation that we are taking namely

following the anti-clockwise direction, we now look into the data whether these two edges

are identified in the same orientation or not. Accordingly, instead of using the just the same

letter to the second one of the pair, I will denote with the letter or its inverse, inverse being

used if only if the ismomorphism is orientation reversing. 
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Also the orientations can be indicated by using arrow sign properly chosen on the edges

while drawing a picture.  The arrow will  depend upon how we started with. For instance,

suppose you start with an edge  and put the anticlockwise arrow on it, when come to another

edge which is in the same pair with this edge  , you denote it with   of   depending on

whether the corresponding identification isomorphism is orientation preserving or reversing,

and accordingly put the arrow also on this edge. Okay? Is that clear how we are going to label

them? Alright as soon as we meet an edge, which is being identified with an earlier edge,

which has already been labelled use the same letter or its inverse to label this new edge also. 



Of course, we stop as soon as we have arrived back where we started. Thus we arrive at a

finite sequence of even length, of letters, each letter occurring exactly twice and only one of

them with a superscript . These superscripts are indicated with  which is either  or .

(We take the liberty not to write it at all if . Since the starting point is arbitrary, the

sequence is well defined up to a cyclic permutation.)

So cyclic sequences look like , where  is an even integer greater than or equal to ,

, but I will write  simply as a. 

A sequence such as (47) is called a canonical polygon. Just to contrast it with an arbitrary

finite sequence. Okay? Indeed, as soon as such a sequence is given, we take the regular -

gon of side length one in  and label its vertices accordingly, which is well defined up to the

choice of the starting point and hence well defined up to a rotation of the polygon. We may

select any triangulation of the entire polygon without disturbing the edges on the boundary.

Then the quotient space   obtained by edge identification as described by the sequence is

determined up to a combinatorial equivalence and hence the underlying topological space 

is completely determined by upto a homeomorphism.  

We shall use boldface capitals  etc., to denote a part (a segment) of the sequence (47)

whenever the part contains more than one term. For example, the sequence  can

be expressed as  where . Upto cyclic permutation the same will be equal to

 also. 
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For completeness, we need to discuss sequences of length  and  as well. In these cases we

do not get a convex polygon in . So what do we do? For , we just take  to be the

emtpyset.  For  , will take the unit disc. Instead of a regular polygon, we just  cut its

boundary into two arcs, by taking the north pole and the south pole as vertices. There are only

two cases for the canonical sequence for , viz.,  or .
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You consider the map from the unit disc in the -plane onto the unit sphere in  given by

 mapsto .... as written in the slide, onto the unit sphere in . This map proves that the

surface represented by the sequence   is homeomorphic to the -sphere. Okay? Look at

any of these coordinate line segments as you move parallel to the -axis up and down Okay?

Under this I am they go to circles on the sphere which are intersection of the sphere with the

coordinate planes parallel to -plane. 
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In the other case viz., , the identification is exactly same as the antipodal action  mapsto

 on the boundary of the -disc. We know that this quotient space is the projective space

 of dimension . 
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(Recall that   is, by definition, the quotient of   by the antipodal action. But you do not

need the whole of , only take the upper hemi-sphere and perform the identification only on

the equator.) So, that can be identified precisely by using the flat disk in   itself. And the

sequence will be now . So,  represents the projective space,  the sphere, okay? Thus

we  have  started  the  classification  and  in  the  simplest  cases  viz,   and   we  have

completed it. Now let us concentrate on cases with n greater than or =  only, okay?
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So, now I want to introduce a binary operation on the set of canonical polygons: Given two of

them  , remember they are sequences of even length,   say, merely concatenate

them to  get   of  length  .  Okay?  This  operation  is  clearly  associative  and  is

commutative in a restricted sense, upto cyclic permutation:

The problem is that it  is  not  clear  whether  this operation is  well  defined on the class of

canonical polygons up to cyclic permutation, viz., if you take a sequence , which is the

same as   upto a  cyclic  permutation,  then  for  any  canonical  polygon  ,  de  we get

 equal to ? Upto cyclic permutation? In general, the answer is No. However,

there could be certain situations in which this holds. In order to understand this, we must

appeal  to  the  geometric  operation  of  `connected  sum'  which  actually  has  motivated  this

purely combinatorial binary operation.  

In a simple geometric terms it means that you make a hole by removing a small disc in the

interior  of  each  of  the  two convex  polygons  and  identify  the  two resulting  circles  by  a

homeomorphism,  to  get  a  new surface,  which  is  called the  connected  sum of   and  .

However, at this stage, we do not need to go deeper into this geometric aspect and just take

the combinatorial definition as a definition of connected sum of two canonical polygons. 

(Refer Slide Time: 25:20)



So I will give you an example, okay. So, here is my , I do not know how many edges are

there in it. I have drawn  edges here and three edges their which correspond the whole that

you have made in the convex polygons corresponding to , and . The dotted parts represent

the sequence  and  respectively. When you identify the three edges of the first one to those

of the second,  sequentially,  you will  get  a  larger  polygon of  size  ,  which is  the

connected sum. okay?
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The crucial point now is that several canonical polygons may define the same surface up to

homeomorphism. What we have so far is that every surface arises out of a canonical polygon.

So there is a set theoretic surjective function from the set of all canonical polygons to the set

of all homeomorphism classes of surfaces.



Our next step is to make a short list of canonical polygons, such that the above function is

both surjective and injective, i.e.,  the list should include all  possible topological types of

surfaces and yet have no redundancy. Our list should not have  and  which represent the

same surface up to  homeomorphism. Each member of  the list  should represent  a distinct

topological  type.  Once  you have  got  such  a list,  you have achieved the classification  of

surfaces, okay? So, first we propose a list and then we go on to prove that it has the required

property, Okay?

Let us now illustrate  the point how two different  canonical  polygons may give the same

surface. One easy way is that one polygon is obtained from the other by a cyclic permutation.

For example,   is the same as  . That is easy. The point is even cyclically

different polygons may give the same surface. 
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So, consider surface given by the sequence  . Just recall  this represents the familiar

surface called Klein bottle. On a rectangle, oriented in the anticlockwise sense, you mark the

four sides by letters. Here the horizontal sides are identified by taking both of them in the

anticlockwise direction whereas the two vertical one are identifies with opposite direction.

So, the sequence is . That gives the Klein bottle okay. 

Mark the diagonal with the letter  , and   thick arrow, (the direction does not matter), as

shown in figure (35) here. Here I have chosen the diagonal from the starting point of  to the

starting point of the next , okay? (Or you could have taken the other diagonal, that will be



from the end point of  to the end point of other . That is what you have to remember in a

more general situation.) 
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Now cut the rectangle along , to get two triangle. The upper triangle you bring it down and

flip it so that this edge marked with a becomes parallel with the corresponding edge in the

lower triangle. So, now the bottom edge of one triangle and the top edge of the other are

aligned in the correct direction. Identify the two triangles along these two edges.

 

The  resulting  figure  does  not  look  like  a  rectangle,  is  actually  a  triangle.  But  as  a

combinatorial object, it has  sides, and you can easily deform it inside  into a rectangle or

a square. So, now the sequence is , which represents the same surface, a Klein bottle.

If I just start from here and cut this new square along the diagonal, running from the initial

point of   to the initial point of  , what I get is two sequences   and  . Both sequences

represent  the  projective  space  .  Therefore,  the  Klein  bottle  can  be  thought  of  as  the

connected sum of two copies of  . 

So, this example is going to be used at the end of the proof of classification that is to come.

The process  itself  becomes a technique called the cut-and-paste  technique and is  heavily

used. Let us stop here today. So, tomorrow we will actually start the classification problem.

Thank you.


