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As promised last time today let us discuss one interesting result due to Poincare and another

due to Munkres. First let us take Poincare's result. So, we will require two facts which we

have not proved so far for lack of time. The first fact is that for any connected closed surface

(closed surface means a compact surface without boundary) the Euler characteristic is always

less than or equal to  and the equality holds if and only if  is homeomorphic to the -sphere.

The  second  fact  is  that  if   is  a  compact  odd  dimensional  manifold  with  non  empty

boundary, then its Euler characteristic is half of the Euler characteristic of the boundary, i.e.,

. The second fact is an easy consequence of the following fact which itself

is not an easy result,  namely, every odd dimensional closed manifold has Euler characteristic

. From that you can deduce this one, by our technique of doubling the manifold. So, that is

the hint. I will leave the rest of it to you as an exercise.

A proof of the first fact you will see in the last part of these lectures during classification of

surfaces. So, right now, we have not proved it. We will assume it. 
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Now let us look at Poincare's result. Take   to be a simplicial complex which is a pseudo

manifold of dimension  without boundary. Suppose it is obtained by identification of pairs of

facets of a convex polyhedron  inside , just like we have done in the previous theorem. If

the Euler characteristic of  is , then  is a closed -manifold. 

If it is a closed -manifold, then we know that its Euler characteristics must be . That is the

general result. So, Poincare comes up with this great result which is a kind of converse. Of

course we have to use that it is a quotient of a convex polyhedron by facet identifications on

the boundary. So that is the hypothesis. Not all pseudo -manifolds are quotients of convex

polyhedron  wherein  the  identifications  are  precisely  the  facet  identifications  and  nothing

extra.  They  are  of  course  quotients  of  Convex  polyhedrons,  but  there  may  be  further

identifications. That is what we have proved in the earlier theorem. After proving it we have

asked this question and now Poincare has an answer here, a positive answer. The proof is not

very difficult. Let us go through this one. 
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We need to prove the local Euclideanness of . There is nothing else to be done since

it already compact Hausdorff. For points which are images of points in the interior of , we

can take the quotient map  restricted to the interior of  to give a coordinate chart, because

 is a homeomorphism onto an open subset of . Therefore, there is no problem. 

Similarly, for those points which are in the image of the relative interior of a -simplex, what

happens? In a pseudo -manifold whenever you have a -simplex, it is a facet of exactly two

of the -simplexes, one on this side one on the other side. So you can take the union of these

two -simplexes. One half open disc on this side and another half open disc on the other side,

together they will form a neighbourhood homeomorphic to . So at such points also, there is

no problem. 

So, what are the points that are left out? Points on the edges, both interior of an edge as well

as finally all the vertex points. These are the points which have to be carefully studied? What

happens to the neighbourhood of these points. So, consider a point in the interior of an edge .

The topology of the neighborhood of such a point depends on the topology of the link of ,

because  the  closed star  of   is  equal  to  the   joined with  the  edge  .  Any  edge  is

homeomorphic to  a  closed interval.  So,  there  I  know what  is  the topology? There  is  no

problem. So, what is the . This is the mystery, I do not know how it looks like. If this is

also like a ball then you would have completed the proof? So, if I address myself to find out

the topology of  then I know what is going to happen to .   being the join of

 with a closed interval, is homeomorphic to the iterated cone, Cone of the cone of 

. 



Clearly the  is one a dimensional pseudo-manifold. Why? Because  is a -dimensional

psuedo-manifold, dimension of the  plus dimension of  must be equal to . That is

the equation for dimensions.  . So, that is why dimension of  is . 

It is not very difficult to see that link of any simplex in a pseudo-manifold is also a pseudo-

manifold. We have already classified one-dimensional manifolds. 
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If it is connected then we know it is a circle. A cone over it is already a -disc and the cone

over that will be a  -disc. So, you have found a neighborhood which is a  -disc for every

point in the interior of an edge . 

The only problem now is to show that   is connected, which may not be the case in

general. So, here is a picture. You want to say that this will not happen. Here the middle line

segment is our -simplex . Can it happen that all these -simplexes in  share  as a common

edge and they forming two families, members of one around one vertex and the other around

other vertex of . (Our picture is in  wherein it is not possible for other obvious reasons, but

 may not a subspaces of  .) So, here   is a disjoint union of two circles, one circle

here one circle there. 

So, why this picture is wrong, why this picture does not occur? That is what we have to show

by pure argument. The only extra condition is that  is . But we shall not need it here. 
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So, we claim that  must be connected. (So, here it is a topological argument not using

any  picture.)  If  not  what  happens?  We  can  write   as  a  disjoint  union  of  two

subcomplexes  and  (like in the picture). We can then partition the set of identifications on

the boundary of  into two disjoint sets accordingly. Because each edge  in  here will

determine, along with this edge  , a unique -simplex in  , viz.,  . So, consider the  

(respectively ) collection of all -simplexes in  which are mapped onto a -simplex of the

form  ,  where   belongs to   (respectively  ).   and   are some collection of  -

simplexes in  which share a facet in the boundary of . Together they cover all -simplexes

such that their image under  contains . You see that facet identifications are occuring with

these two families. Therefore, no -simplex in the first  will have anything to do with a -

simplex in the second family . 

But  there  is  this  -simplex  common to  the  image of  all  of  them.  how did  that  happen?

Remember, when you are identifying two  -faces, automatically certain edges of the faces

will get identified. But there is no additional edge to edge identification, extra identifications

are not allowed.  (This is a very important point which not many people may understand this.

When  you  identify  a  triangle  with  another  triangle  via  a  linear  map,  automatically  the

boundary edges of this triangle and the boundaries of that triangle are also identified in a

corresponding order. After this if you say one ore edge is identified with one other edge and

so on, that is not allowed. 

Therefore, will give you a contradiction. In the quotient there will be at least two distinct

edges   and   but  they are both mapped to the to  same edge   here.  So, how did that



happen? So, this is why the link of  must be connected -dimensional pseudo manifold and

therefore, it is a circle. A circle star  is homeomorphic to the cone over the cone of the circle

which is a -disc. 

So, that will take care of all the points in the interior of all the edges. Finally, we are left with

vertices  in  boundary  of  .  Why  there  are  neighborhoods  of  vertices  which  are

homeomorphic to  or homeomorphic to an open disc in ? This is what we have to see.

This is where the last condition  comes in to play. 
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It remains to check the local Euclideanness at the image  of vertices of the boundary of .

We work with a  subdivision   of  ,  say  ,  where  in   are  disjoint

disjoint from each other. It is enough to show that each open star  is homeomorphic

to an open disc. Equivalently, it is enough to show that  are all homeomorphic to the

-sphere. Note that we are not taking all vertices of  here,  are vertices of the original 

only. So, all that I have to prove is that each  is a topological -sphere which is the

same as showing that  for all . 

This is where I am using the fact (B). What I do? Let  equal to union of all the closed stars

of the vertices , and let  equal to the closure . Each closed star is a closed subset and

 being a finite union of these,   is also closed. Take  . That is the open set, take its

closure, so that   is actually   and what is  ? It is precisely the union of all the

boundaries of  which is nothing but a disjoint union of . Since we have shown

that   is  -manifold  away  from all  the  vertices  ,  it  follows that   is  -manifold  with



boundary equal to . And now I use the fact (B). What does it say?  of boundary of  is

equal to twice the ?
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But what is boundary of ? It is . Since  is  by the hypothesis. For any simplicial

complex  you  have  sen  the  addition  formula  for  Euler  characteristic.   is  equal  to

, where  and  are subcomplexes such that . Therefore,

.  Therefore,

.   

What is ?  is a disjoint union of star of 's. The problem is to prove that each of them is -

disc, that is our problem. But each of them is contractible, being a cone. For a contractible

space, Euler characteristic is . But there are how many of them? Let us say that  is number

of  vertices  in  .  Euler  characteristic  of  a  disjoint  union  is  the  sum  of  the  Euler

characteristics. Therefore, . So .  

Since  is the boundary of -manifold, it the disjoint union closed surfaces  and

there are  of them. For each of them  is less than or equal to . But the sum total is

. So, therefore, each of them must be equal to . It follows that  is a topological -

sphere, for each .
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So, let  us now take a result  due to Munkres  which is  actually  used in a  big theorem by

Stanley,  through  the  works  of  another  important  person  called  Reisner.  Reisner  gave

combinatorial condition for the face ring to be a Cohen-Macaulay face ring of a simplicial

complex. Munkres result uses to prove that the Reisner condition is satisfied in a particular

way. 

So, in that way, Munkres result is useful in combinatorics. Ultimately all these things were

used in proving a big conjecture which is called the upper bound conjecture, by Stanley. So,

we are not going to do anything about the face rings here. But, we will do the topological

aspect of that. Namely, Munkres result which an important result on its own. I want to show

that just because something is important does not mean the proofs are difficult. I want to give

you an easy proof of this one. Here part of it we have already done. 
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So, what is the theorem of Munkres? It says, take a connected topological space which is

triangulated, . I assuming that  is a finite simplicial complex of dimension . Then

the  following  two  statements  are  equivalent.  These  are  some  local-global  homological

conditions:

(a)  (this is a global condition) and  is   for every for   and

for every . So, this is true for . Both  and  are . It is the

first condition. 

(b) Second condition is  of link of  is  for  less than dimension of the link of  and for

every simplex of . The reduced homology of the link vanishes below its dimension. 

And these  conditions are equivalent is the statement of theorem. Since we have done a little

bit of the study of these things already, it will be very easy for you to follow this proof.
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Observe that since the empty set is also a face, it is allowed to take  in the statement (ii).

According to our convention as well as according to Munkres' convention the link in  of the

empty set the whole of  .This follows by the definition as well. Therefore, condition (b)

implies that  is  for all .

So, this gives you the first part of (a). For the rest of the proof you have to wait. We shall first

prove  two lemmas.  In  fact,  I  am breaking  down the proof  into  simpler  statements  here,

instead of complicating the whole proof by trying it in one go.  
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Take just these conditions, condition (a) or condition (b). Each one of them implies that  is

a pure simplicial complex. We have seen that for a triangulation of a topological manifold.

The proofs here are similar. 

Suppose (a) holds. Take a maximal simplex inside . I have to show that dimension of that

simplex is equal to . That is what I have to show for purity of . Take  to be a maximal

simplex.  Take  a  point   in  the  interior  of  .  Then  we  have  seen  that  by  excision,

 is isomorphic to . These steps you have seen before. Here  is

the  dimension  of  .  The  excision  works  because  for  any  maximal  simplex  ,  the  open

simplex  is an open subset of . Now (a) implies that this , because  of this one is

infinite cyclic. But  cannot be bigger than than  and so, it must be equal to . Now, suppose

(b) holds. 
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Now,  this  time  the  proof  is  a  little  more  elaborate  and  we  are  again  repeating  the  old

arguments here. Suppose  is not pure. Let  be the collection of all -simplexes and their

faces. If it is not pure that means there are simplexes in   which are not faces of any  -

simplex and therefore  is a proper subcomplex. 

So, let  be the collection all simplexes in  which are not a face of any -simplex and all

faces  of  such  simplexes.  Then  .  Both   and   are  non-empty  (by  our

assumptions that dimension of  is  and  is not pure) subcomplexes.

Since   is connected it follows that   must be non-empty. All these arguments you

have seen earlier also. Take a maximal simplex  inside the subcomplex . Of course 

is non-empty and it is a proper face of a simplex  in . Why? Because if it is a maximal in

 also,  then  it  will  not  be  in  .  Hence  dimension  of   is  less  than  dimension  of  ,

dimension of  itself is less than  because   is inside . So, the codimension of   in ,

which is n minus dimension of  is at least 2. 
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Also, sigma is the proper face of a  -simplex   in  , because by definition of  , every

simplex inside  will be contained in a larger simplex which is of -dimension. Hence link

of  intersects both  and . (Now we come to a part which is different from the

earlier  proof  where  we  used  the  connectivity  of  .  So,  here  we  are  doing  something

different.) 



Since   is  maximal in   it  follows that   intersection with   is  empty.

Therefore link of   is disconnected. Therefore,   of link of   is not  . (If it is  , it would

have been connected.) On the other hand, we have seen that  is of dimension at most .

And  is inside  which is of dimension . Therefore, dimension of the link of  is at least 1.

Below that, the reduced homology must be   according to (b).  That is a contradiction to

condition (b).

So, this proves our lemma namely, both conditions imply   is pure. After this lemma, the

proof of Munkres' result is very easy.
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All that your observe is that we have used only the second part of condition (a) or condition b

for non-empty faces in proving the purity. The condition (b) for an empty face implies the

first part of (a). I have already told you this one. So, now proof of the theorem. By the  lemma

either  of  the conditions  imply   is  pure.  Hence,  for  each   belonging to   has

dimension , no matter what simplex  you take, a vertex, an edge or a -simplex.  

Therefore,  dimension  of   plus  dimension  of   plus  1  is  equal  to  ,  which  is  the

dimension  of  the  star,  because  star  is  always  link  starrd  with  the  simplex.  So,  that  is

dimension equation, we have been using this one again and again. 
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Now, start with condition (a), I want to prove that it is equivalent to condition (b). There are

only these two steps now, you have to understand and that is the proof. Let us see condition a

implies and implied by, is equivalent to to say that   for  (it is the first part

and (the second part is) . So, what we have seen that this latter group is

equal to (link of ) by taking a point  in the interior of . This is true for every

non empty face  of  and for all . 

This is the same as saying  is  for  and for every face  of

. We have just seen the formula of dimension of link, I am putting that here. Dimension of

the link is  minus dimension of  minus . How I got it? I got from (40) here. So, from here

to here to here you have come, but this is nothing but condition (b). So, Munkres' theorem is

proved. 

Next  time I  shall  make  some general  remarks  about  triangulations.  Where  to  find  more

material, what are the general results known and so on with no proofs. After that we will start

classification of triangulated surfaces. Thank you.


