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Having studied some local homological properties of a simplicial complex and then having

studied some local homological properties of a triangulated manifold, we were lead to make

the following definition now. A simplicial complex which satisfies properties (ii), (iii) and

(iv) of Theorem 6.10 is called a pseudo-manifold of dimension  . So, this was part of the

statement of a theorem that we proved last time. Let us go through that theorem first. So,

these was the statement.
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Take connected compact topological manifold without boundary and let   be a simplicial

complex  such  that  .  In  other  words,   is  a  connected  compact  topological  n-

dimensional manifold and is triangulated. Then the following holds:

(i) For all non-empty faces of , we have , for  less than the dimension of

, and is isomorphic to  for  equal to dimension of . This can be restated, in nut-

shell as follows: link of  looks like a homology sphere.

(ii) The second statement is that  is pure of dimension .
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(iii) Third statement is that every  -face of   occurs as the face of exactly two  -

simplices.

(iv) The fourth condition says that from any -simplex to another -simplex in , we can go

via a path of -simplexes. 

By a  path  of  -simplexes  we mean  a  sequence  of  -simplexes,   such  that  the

intersection of  with  is exactly an -face. You start with  and end up with

, then this a path from  to .

So, instead of two of course the pure means that there will be at least one. So, if there is only

one then that kind of simplexes will become boundary part so then you will get manifold with

its boundary.



This condition especially  along with of course (ii)  and (iii)  themselves become important

now.  may not be topological manifold now, forget about condition (i) also. Assume only

that   is a simplicial complex satisfying these there conditions. Forget about compactness

also. Anyway, connectivity comes automatically from (ii) and (iv).  Make these conditions as

axioms for the definition of a pseudo manifold.  

In condition (iii), if you replace the phrase `exactly two' by `at most two', then you get the

definition pseudo-manifold with boundary,  This means that an  -simplex may have

only one  -simplex containing it,  since condition (ii) says that there is at least one. Such

-simplexes will constitute a subcomplex called the boundary of . 
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So, now, having made a definition we have the following corollary, stated as a theorem 6.11.

Given any compact pseudo-manifold of dimension , with or without boundary, there exists a

triangulated convex polyhedron  in  a surjective linear map  from  to  which is an

isomorphism restricted each simplex in . Moreover, there are affine linear isomorphism 

from  to , where  and  are some distinct facets of  such that

 for all  and for all . 

(Reviewer's note: It should be noted that the statement of the theorem 6.11 as appears in the

slide is somewhat incorrect and incomplete. It also follows from the above statement that the

boundary of  is empty iff the boundary of  is equal to the union of of all  and 's.) 



This  result  is  quite  simple minded and is  the starting point  of  our  classification  for  two

dimensional  manifolds.  Indeed,  this  is  the way how Poincare  had perceived  a whole  for

classifying three dimensional  manifolds.  Unfortunately,  even after several  years,  almost  a

whole century of trials by various authors to complete his programme, it has failed in some

sense. But, for , we going to use it in the classification.

Though in higher dimension it  has failed to yield proof of classification, this result gives

quite a lot of information on the topology of a triangulated manifold. So let us go through the

proof of this one today.
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We start by labeling the -simplexes of . If there is only one -simplex, there is nothing to

prove. Just call it  . Put   So, we assume that there are more than one -simplex.

Choose  to be any one of the remaining simplexes such that   shares one of its  -

facet with .

Having labeled  of them, , put  equal to the union of  for , and

choose  to be yet another -simplex which shares at least one of its facets with  for .

And this is possible because of condition (iv) in theorem 6.10. For if there are more that 

-simplexes in  , (i,e,   is not equal to  ), then fix one of them say  in in   and

choose a path of -simplexes from  to . The first -simplex which is not equal to any of 

for  will qualify to become .  
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Now  what  I  am  going  to  construct  triangulated  convex  polyhedrons   contained  in

 and surjective simplicial maps  from  to K_j such that for each  the

following 3 conditions hold.

(a)  is a bijection on each simplexes of .

(b)   restricted to   is  .  That  means,  each successive   is  an extension of the

previous ones.

(c) the third condition is that if   is any one of the boundary facets  of  ,  then   is  a

homeomorphism restricted to the interior of . If you take the whole of  along with

all of its boundary,   may not be injective. In other words, injectivity fails at each stage,

only on the boundary of  if at all. 

For example, when  to  is actually an isomorphism, where  can be chosen to

be the standard -simplex in , convex hull of .

So, this condition looks like a weak condition but this is all we can ensure. As we keep going

up inductively, this will help us to prove the next step. By the way, if I just say that in the

interior of , it is injection that is not enough.
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So, let us see how we are going to do this inductively. We are interested in the size of the

convex polyhedrons of course. So for , I am free to choose any  points in  and

their convex hull as , which is automatically isomorphic to any -simplex. 

So, start with   from   to   given by a bijection of vertices extended linearly. Clearly

condition (a), (b) (c) are satisfied. Suppose inductively we have arrived at the stage  of the

construction with  contained in , and  from  to  satisfying (a), (b) (c). 

Now look at . By the very choice of this labeling, it will share at least one -facet

with some simplex  inside . (It may share more of than one also.) Fix one such facet . It

follows that  is the union of  with a unique vertex  belonging to , where recall

that . So, it will be inside . But what may happen is that this extra

vertex may be already inside . It is can happen. But we do not have any objection for that. 

Now let  contained  be a facet which mapped onto  by . Such an  exists because 

is surjective. It follows that  must be also in the boundary of  because below,  is in the

boundary of . 
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Now, I want to construct . I have a convex polyhedron  and I have located a facet  on

the boundary. So, consider the convex region bounded by the hyperplanes (i.e. affine linear

subspaces in ) spanned by  and each facet in the boundary of  which intersect , and

which lies outside , (which is actually a bounded one also). Take  to be any point in the

interior of this convex region. Let  be the convex hull of , which is nothing but an 

-simplex now. Put  = convex hull of . Indeed,  is just the union of {  with .
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So, look at this picture it will tell you the story. I have constructed up to here and you are

located a facet  in  and look at this plane, ..., this plane all that at all of them intersecting

this , so there will be a convex region bounded by all of them. and outside of this convex

region. Choose some point w like this then take the convex hull of  and . That is my .

This is a  -simplex. Here in the picture  . Automatically union of   and   will be a

convex region. If you choose   in the boundary of   even then the convexity of the union



holds but then the facets of the union will not be appropriate. If you choose   outside rho

then the union may easily fail to be convex. So, that is the criterion for choosing this .  
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Now, define  from  to  by taking  on  to be  restricted to  and  and

extend linearly over the whole of . Finally define  on  to be  on  and  on .

So, the construction is over, but we have to prove that all these three conditions now. First

two are obvious. But condition (c) condition I have to prove, assuming it to true upto , I have

to prove it for . Then the construction will be over. 
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So, here is the picture of a worst scenario. Even in this case, condition (c) will be true. To

begin with you have your , us say, consisting of 7 of the triangles here in the picture. So,



whatever labelled could be, it is quite arbitrary except that it satisfied a certain condition. So,

for example, I have started from here and gone like this labeling them 1,2,,3,4,5,6, and 7. 

So, accordingly I construct the  's here. At the 7 the stage, look at the triangle  .  It is

sharing one facet here with  and then I have constructed correspondingly a convex polygon,

this will be my point   and that will  be mapped to this point and extended linearly. The

construction is over now, why condition (c) is true? What does the condition (c) say? You

take the entire interior of of this polygon, add any of the boundary facets here any one of

them, on the union  must be injective. (Once you prove injectivity, it will be automatically

a homeomorphism.) That  is  what you have to  show. So, suppose I  have taken this  edge

which is already in the in . Since condition (c) is true for , so injectivity follows. 
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So, more generally, if the added boundary facet is already in , there is nothing to prove. But

suppose the extra facet is is a facet of . Then we use the fact that  is a bijection from the

interior of  and  is is a bijection onto  and their image is precisely equal to ,

to conclude that  is injective. Here we are appealing to a general topological fact, viz., if

 is a continuous map on  and  from  to  and  from  to  are homeomorphism

and  then  from  to  is a homeomorphism. 
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Finally, what do you do? Take  to be , where  is the number of -simplexes in , and

define   from  to   by taking it to be  on  for each  . It is well defined because of

condition (b).  Clearly,   is  a  surjective closed  mapping and hence  is  a  quotient  map.  It

follows that  is a homeomorphism in the interior of . If you take any one facets of , there

also it is injective. But now I am going to say something better.

The image may not be a boundary facet of . Why? because this facet may be covered by

another facet also. It may happen that two distinct facets of  are mapped onto the same facet

in  . Label them in pairs   and  . (There will not be a third one mapped onto the same

facet. Why? Because each facet in  is the subset of at most two -simplexes of .)
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So,  label  them   and  .  Put   restricted  to   and   restricted  to   and

 from  to . It follows that each  is a linear isomorphism and we have

 for all . This completes the proof of the theorem. 
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So, let me make a few remarks before closing up. If  is the quotient of  obtained by only

face identifications as in the theorem, then clearly  is a pseudo-manifold and  factors to

define a quotient map  from  to . In general, this  may not be injective only because

there may be further relations inside the -skeleton of  which are not consequences of

the face relations.

The method of proof in the above theorem is the beginning of a technique known as cut and

paste technique. You started with a triangulated pseudo-manifold, you perform a few cuts

along its facets in any order you like, you then paste them back exactly wherever you have

cut but in a different order. You get back the same space. You have the freedom to change the

size of the pieces through affine isomorphism, because we are topologies you are not doing

any geometry here. So, you can change the size of the simplex but wherever you have cut it

from you have to place it in the corresponding thing there. This freed can be used in different

ways in different contexts.  

 

So, this is something which is somewhat strange in the sense that in topology you are not

supposed  to  cut  things.  That  will  appear  as  if  you  are  doing  something  discontinuous.

Continuity has to be retained. Wherever you have cut that is only temporary you are pasting

along the same spaces upto homeomorphism we are pasting the same parts that is why it is



allowed. It is called cut and paste technique. Almost half a century of mathematicians have

used this especially in dimension 3 very fruitfiully. 

Dimension 3 he says become a big industry a lot of results are proven. Yet the final aim

namely,  of  proving  Poincare  conjecture  in  dimension  3  was  not  achieved,  from  this

technique. So that is why I am calling it a low dimensional topology, which usually means

the study of 3 and 4 dimensions. In the next lecture, we shall use this technique to classify

surfaces.

Now, we are going to discuss the converse. Given triangulated convex polyhedron  in 

and a pairwise facet identification data as in the above theorem, we ask a few questions:

(i) Is the quotient a simplicial complex so that the quotient map is simplical. This is the first

question which is answered quite easily anyway.

(ii) Let us take the second question. Is the quotient a topological manifold?

Starting with any pseudo manifold  which may not be a manifold, the above theorem gives

you the convex polyhedron and the quotient map as above. But we have not proved that the

quotient is obtained by precisely the facet relations. That is why this is a non trivial question.

That is why it  is a good question. Because now you have to think of putting some extra

conditions of your choice to obtain an affirmative answer.
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So, let me discuss it for a few minutes only. The answer to (i) is in the negative in general.

As a counter example, you may take , then the quotient is either itself or a CW complex

with one vertex and one -cell. 

However, if we take the second barycentric subdivision of  which is already assumed to be

triangulated, then the quotient map induces a simplicial structure on  such that the quotient

map becomes simplicial. I will leave this one to you because I am not going to use it in this in

this course anyway. 

As  the  answer  to  second  question  is  also  negative  in  general.  But  in  dimension  ,  it  is

obviously true. In dimension 2 also, it is tried but requires some proof. So, in dimension 3

onwards, this is some some extra condition which is necessary and sufficient, in terms of the

Euler characteristic. 

And this condition is  due to  Poincare.  It  is  a  very interesting one. I  guess  perhaps,  how

Poincare tried to classify all compact three dimensional manifolds. So, next  time we will

discuss this result due to Poincare and another result which is not related to this question but

just to fit the module, and this result is due to Munkres. Thank you.


