
Introduction to Algebraic Topology (Part II)
Prof. Anant R. Shastri

Department of Mathematics
Indian Institute of Technology, Bombay

Lecture - 53
Triangulation of Manifolds

(Refer Slide Time: 00:12)

Today we are starting a new topic, triangulation of manifolds. Recall triangulation of any

topological space just means that we have a simplicial complex  such that the geometric

realisation of the simplicial complex , denoted by , is homeomorphic to the topological

space given, okay? Then the homeomorphism will be called a triangulation of . You want

to say, if such a thing exists, then the space is called triangulable okay. So, we are going to

study triangulated  manifolds.  So,  in  particular  it  will  have  the  properties  of  a  simplicial

complex as well. So, let us begin with the study of local homology of triangulated manifolds.

So, first the local homology of any simplicial complex or in general as far as possible, then

we will go back to the triangulation of a manifold and then strengthen those results. 

So, in general,  what is happening to the local homology of any simplicial complex? Okay.

So, it is the first lemma here. Let  be any simplicial complex and  be any face in it, let 

belong to the interior of , i.e.,  is a point in the interior of , this is geometric realization

of , interior of  just means the set of all , where ’s are vertices of , okay, all the

’s are positive real  numbers, with  , that is  element in the interior. The lemma

states that the following:  of the pair , obtained by throwing away the point,

will be the same thing as  , the reduced homology of the link of   okay? But the



dimension is reduced, the dimension of the link is also equal to dimension of  - 1. So, this is

the statement. 
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So, recall that for any simplex  in , the open little star of  is an open subset of .

How was it defined? It is the union of interior of simplexes  in . First of all, 

must be a simplex in , then you take  the interior of  and take the union of all such

sets, that is called the open star of  denoted by . The definition is similar to the case

when  is vertex, a single point   we had defined and this is a generalization okay?

Automatically  it  will  be an open subset  of   itself okay? Therefore,  we can apply this

theorem 3.,  the excision theorem Okay? Whenever you have two open sets  covering the

entire thing, the two open sets will form an excisive couple, viz., the pair  is

an excisive couple okay?

Note that here not both of are open. The closed  contains  which is open in  

and  is also open and they cover . That is why this is a excisive couple okay, in

.  By  excision  theorem  3.6.   is  the  same  as

. So, because,    is  , if   is an excisive

couple for singular homology. This is the first step. The LHS above is called the homology of

 localized at the point , justified by the above isomorphism. From the whole space  you

are able to come to considering a neighbourhood of the point  is neighbourhood of

every point in interior of . So, that is the first step. Now let us see further, why it is just the

homology of the link Okay?



Recall that we have also proved that star of , where  is single point in the interior of

, will contain the mod of (the link of  join with boundary of ) as a deformation retract.

From the point , you can radially push the space out to the link of  star boundary of . The

star denotes the join of two subcomplexes as a subcomplex. So, it is similar to the definition

of star of two topological spaces, wherein you have a disk and their point interior is removed.

Then the boundary sphere is a deformation retract. This we have proved in part 1 okay? this

is not a very difficult thing here I will assume that one. okay? 
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Therefore,  in  ,  this  is  the  deformation  retract  of  ,

therefore,  I can replace this one by this one. The situation is again similar to the case of

, whose homology is the same as the homology of the pair , but you

cannot use that result but the fact that namely   deforms to this subset, a more

general result.  

Let us denote by  the dimension of  okay? That means, there are  vertices in . okay?

Since   is  contractible  okay,  it  is  actually  a  convex  subset  inside  .  So,  this  is

contractible. What we get from the homology exact sequence of this pair?  will be 0,

for all , and so the connecting homomorphism from  of the pair to  is

an isomorphism. So, every third term is zero means the other two terms are isomorphic. That

is what happens in the long exact sequence.

I think we used the notation delta for the connecting homomorphism. So you can use the

same  notation  or  any  other,  it  does  not  matter.  But  note  that  boundary  of  a  simplex  is



homeomorphic to a sphere,  is a -simplex, so, its boundary is homeomorphic to a -

sphere  okay? Since mod of the stars is  the same as the star of the mods, the underlying

topological space of  is the same thing as the  starred with . Okay?

But what is the join with ? It is the same as taking iterated suspension  times. Join with

 is the same as taking suspension, join with  is the suspension of the suspension and so

on. So, you have to suspend -times, okay?

By suspension isomorphism, you keep coming down   times,   to  , of the

original space,  . The suspension isomorphism states that in homology of the original

space to the homology the suspension but the dimension increased by one. Here we have

apply it -times in the reverse direction. So, this establishes this isomorphism. This lemma is

an elementary result which we will be using later on. 
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Now,  let  us  make  a  definition.  Take  any  simplicial  complex  .  We  say  it  is  pure  of

dimension  (we have done this in the case of CW complexes, this is similar to that), pure of

dimension   if each simplex in   is a face of an n-simplex. In other words, all maximal

simplexes are of the same dimension , Okay? So, that is the meaning of pure. This is just

some terminology. In other words,  is pure of dimension  and if and only if every maximal

simplex in  is of dimension . So, this could be taken as a definition also. 

(Refer Slide Time: 12:33)



Let us now start with a manifold manifold with or without boundary. So, let us first take the

case of without boundary, then given any point  you can choose a neighbourhood  of

 homeomorphic to . If  is in the boundary then you would have taken homeomorphic to

 the  half  space,  right?  So,  if   an  interior  point  anyway,  then  we  can  take  the

neighbourhood to  be homeomorphic  to   itself  always,  whether   is  manifold  with or

without boundary.

By  excision,  it  follows  that   is  isomorphic  to  .  But

 is homeomorphic to the pair  under a homeomorphism from  to

 which takes   to  , a chart at  . Now, combine this result with the previous lemma, we

immediately get the following not so obvious result:

Let  be connected compact topological -manifold without boundary. (I want to emphasise

that   is  empty.)  Let   be  a  simplicial  complex  such  that   is   that  is   is  a

triangulation of . Then the following statements hold:
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(i) For all non empty faces  of , we have  is  for  less than dimension of the

 and when  is equal to dimension of the , okay? Then it is isomorphic to . That

is   is  a  homology  sphere.  Homology  sphere  means  what?  The  sphere  has  some

homology namely, all the reduced homology, except the  -th homology is  , right? If the

reduced homology of a space is like this, then  is called a homological sphere of dimension

. This is true for the link of any simplex is the statement. We know that the boundary of a

simplex  is actually a sphere. However,  the link of  in a triangulated manifold , may or

may not be a sphere but a homology sphere.  Also the   is  of dimension  ,

where .

Statement (ii) is that   is pure of dimension  , every simplex must be contained in a  -

simplex. This is like invariance of domain and easily follows from invariance of domain. But

we shall give a somewhat simpler proof. 
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Third statement is somewhat non trivial. Every  -simplex of   occurs as a face of

exactly two -simplexes.

The fourth statement is that given any two -simplexes  and  inside , there is a chain of 

-simplexes connecting  and . What is the meaning of this? This is like a path. Remember in

a connected simplicial complex, from one vertex to another vertex, there is a path of edges.

Through edges only you can go from any vertex to any other vertex. Similarly, here through

-simplex. So, what is the meaning of this? There is a sequence of -simplexes ,

so that  and  is exactly an  face of both  and  for all .

So, that is a similar and somewhat dual to the idea of an edge sequence. 

So, statements (ii), (iii) and (iv) are seemingly nothing to do with the discussion of homology.

We will go through them, one by one. 
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The first one is immediate from the lemma 6.8 by taking any interior point  of . Since, I

can replace   by , we have  is the same  which is the

same as . So, only for , it is infinite cyclic, otherwise it is  right? So,

that is what I am using here now, in the first part here. Everywhere else it is  when  equal to

dimension of the link, it is  On the other hand this is also isomorphic to 

which, we have is is equal to . The statement (i) follows. 

Second statement here is that  is pure of dimension okay. So, how do we prove that? If  is

any maximal simplex, then interior of  is an open set in . okay? Hence for any  inside

interior of  ,   is an excisive couple. Also the boundary of any simplex is a

strong deformation retract of  minus the single point. This fact, we have been using several

times,  because   is  homeomorphic  to  a  closed  disk  okay?  Therefore,  we  have

 is isomorphic to , and you can rewrite it in a different way

viz., , using the exact homology sequence, because  is contractible okay?

Since   is  homotopy equivalent  to the boundary of  ,  I  can  replace this one by

. This means the boundary of  is a homology -sphere. Therefore,  must

be an -simplex okay? I started with a maximal simplex then I have concluded that it is an -

simplex Therefore,  is pure dimension . okay? 
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The third statement is every -simplex in  occurs as the boundary of exactly two of

the -simplexes in . Like in a triangulation of a circle,  every vertex is incident exactly with

two edges right? So, the same thing occurs in any triangulation of a manifold of dimension ,

that is what we have to prove okay. So, take any  - simplex  in . Then for any point

 in the interior of  , what happens? From (i), we get   is isomorphic to  

which  is  isomorphic  to  .   is   means  that  the  space

exactly  two connected components. What is the link of   where   is a  -simplex?

Since  dimension  of   is  ,  it  is  of  dimension  .  Therefore,   is  a  discrete  space

consisting of same vertices of  . Since it has two connected components,  

for two distinct vertices  in . This just means that  and  are the two -

simplexes containing . 
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Let us prove the fourth statement now, okay? On the set of all  -simplexes having a chain

from one to the other as above defines an equivalence relation, just like any two vertices can

be connected by an edge path there if there is a path from here to here, there is a path from

there to here, here to there, there to here  to ,  to  and there will be a path from  to 

right. So, this is an equivalence relation. We need to show that there is just one equivalence

class. Assuming on the contrary, let  be the subcomplex spanned by all -simplexes in one

of the equivalence classes. Start with one -simplex then look at all the -simplexes which

can be joined to this the simplex through a sequence of simplexes okay? You are assuming

that it is not the whole space then what happens is a question right? We need to show that

there is just one equivalence class. Assuming on the contrary, let  be the complex spanned

by all  -simplexes in one of the equivalence classes. Let   be the sub complex spanned by

the rest of the -simplexes. So, you have two sub-complexes which cover the entire , okay?

Then,   and   are closed subspaces of  , because they are sub complexes.   is

connected and therefore,  and hence  must be non empty, alright? A and B are

subcomplexes, so  itself is a sub complex which is non empty okay? So far we are fine.
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Now, let  be a maximal simplex of . This may be a vertex or an edge and so on, you

do  not  know  yet  okay?  Take  a  maximum  simplex  in  the  intersection.  It  follows  that

dimension of  cannot be . It must be smaller than . Why. Because, if it is an -simplex

that will belong to both  and , right? Because  and  are disjoint union of equivalence

classes of -simplexes.  



If  is an  - simplex that means, again since it belongs to both  and , there must be

a -simplex on this side and another -simplex on that side of . That means, the class of 

goes beyond , which is a contradiction. Therefore we are forced to conclude that dimension

of  is smaller that , okay? Alright. This implies that the link of  in  must be higher

dimension  than  .  If  it  is   dimension,  the  link  will  be   dimension  and  if  it  is  

dimension link will be empty. If it is lower than  , then only link will be of positive

dimension because the formula is dimension of  + dimension of link of  . So,  the

dimension  of  the  link  of   is  positive  which  means  that  it  is  a  simplicial  complex  of

dimension greater than or equal to .  But the part (i) says that  must be , hence

link of  is connected. Clearly link of  cannot be completely inside  nor inside . Okay?

Link of   intersection   non empty, link of   intersection   is also non empty. From the

maximality of , which is very important now, inside  okay, (I am not taking maximal

inside inside the whole of ), in , it follows that there is an edge  inside  with one

vertex  inside  and not in  and another vertex  inside  and not in . Probably, here you

should make a picture of a -dimensional simplicial complex (that is the best for any picture)

by using an edge path inside   running from one vertex in  to another one

vertex in .

So, now let  be an -simplex such that  is contained inside , okay? Why does such 

exists? Because  is a pure of dimension , since e is in the  and  is a simplex of

. So, it is contained inside some -simplex. Then either this  is in  or in , because all the

-simplexes of  have been divided into these two those set an equivalence class  and other

is the union of all other equivalence classes. So,  is either in   or in  okay. So, that is a

contradiction now, because it will imply that both   are inside   or inside  . but I have

chosen  and   such that one is not in   and other one is not in  . That is important here

okay? 

So, this is a very neat proof I myself enjoyed this one. So, it is simple minded thing like this

that you should be able to do soon on your own. Property (iv) of a triangulated manifold itself

is made into an axiom. Simplicial complexes which satisfy such an axiom are called pseudo

manifolds. I think we will stop here today. So, next time we will study what is a pseudo

manifold based on this result Okay? thank you.


