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Continuing with the classification of -dimensional manifolds, recall that we have represented

every manifold as the quotient of a disjoint union of open disks, all of them of  dimension,

and in order to study the topology of the manifolds, we need to understand the equivalence

relation defining these quotient maps which are expressed by what are called the transition

functions. And we have done a beginning of this study, with two motivating examples and

two lemmas, which actually,  take care of a big chunk of what is happening there okay?,

namely, the nature of homeomorphisms occurring in the gluing data okay? 
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We can now concentrate on other aspects of these transition functions,  from  to

 where these  are open subsets of different copies of . The first thing you would like

to know is how many components   has. Since   is an open subset of  , it is a

countable union of open sub intervals of   and each component is homeomorphic to

. (This is one of the biggest advantage of being in -dimension. Such a neat description

is not possible in higher dimensions.) Our next claim in this direction is the following:
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Let   be a Hausdorff space and   from  to   be any homeomorphisms onto open

subsets  and  of  respectively. Assume that  is not a subset of . The first claim is

that: 

(i) There is no component of   which is an open interval of the form

 for some , i.e., strictly inside the interval . In particular, this will

imply that  okay, can have at most  components. This is the statement of course, we

will see the proof soon. 
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The  second  part  of  the  statement  of  this  lemma  is  that:  Assume  further  that   is  not

contained in . One more condition now. 
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Here we are assumed that  is not contained in , but now we want the other way inclusion

also not valid, so assume that also.
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Then after changing  by a reflection about  in the domain of , if necessary, one of the

components  of  this   is  of  the form   for  some   strictly  between   and   and

 from  to  is order preserving homeomorphism onto the interval ,

where  is in the open interval , Okay? So, this is the second part of the lemma.

So, this lemma is a little more elaborate than our earlier lemma. Together they more or less

complete the local analysis of what is happening inside each  . So, let us go through the

proof of this. 
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The first thing is to note that components of  are all homeomorphic to open intervals. I

am repeating this. That is all. The emphasis here is that none of them will be some middle

portion of . It will not be equal to  where . So, this is the claim here.

Now, suppose that is not true, namely, there is one component of   of the form  as

above. 

Now consider the restriction of the homeomorphism,  to . Suppose its image is

, which is a subset , Okay? Since , which is the image of , is not contained in ,

okay? It follows that   is not the whole of  . Therefore, we must have   or

. Let us say that . Okay? The other case will be similar. So, we are claiming

that this leads to a contradiction.
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Suppose   from   to   is  increasing.  It  follows  that   and  

(remember   and  are defined on the whole of  , and so  and  make sense)

are  distinct  points  of  .  They  are  not  identified  with  each  other.  Also,  they  cannot  be

separated  by  open sets,  because  every  neighbourhood of   will  contain  

which will intersect every neighbourhood of  which will contain  for some

positive  that will contradict the Hausdorffness of  . You have used this argument in the

earlier lemma. So, this this is what happens here again. 

On the other hand, suppose now, this homeomorphism is decreasing. Means what? Points

near  are mapped onto points near  and points near  are mapped to points near . Then it

follows that  and  will be very very nearer, but the two are distinct points and they

cannot be separated by open sets in .  

In either case, we get a contradiction to the Hausdorffness of  . Okay? So exactly similar

things  would  happen  with  ,  if  we  assume  .  So,  we  have  full  contradiction,

contradiction to what, contradiction to the fact that one of the component is of the type 

a middle portion.
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What is the meaning of this? That means, components of  must be of the form  or

 or where  are in . So, there are only two possibilities. In particular,  may

have just  one component  which  could be  either  of  the two type,  or   may have  two

components  in which case on one of them is of the form   and the other  .  In



particular,  has at most two components. This completes the proof of (i). That gives you a

better picture of what map happen.
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(ii)  Now,  under  the  additional  hypothesis  namely   is  not  contained  inside   okay,  it

follows that there are at most two components of   and they are of the form   or

 or  both.  Before  going  further,  note  that,   and   are  both  homeomorphic  to

. Hence the two have same number of components. 

Now, for the sake of definiteness, assume that one of the components of  (it may the only

component) is of the form , by replacing, if necessary,   with  where  is the

reflection in . Now  is some component of , we do not know what is its

form, there are two possibilities. By replaces , if necessary, with , we shall assume

that it is of the form .
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Now comes the question whether  from  to  is increasing or decreasing.

Suppose this is decreasing. Decreasing means what? Points near  go near  and points near 

go near to . Points  and  cause no problem. But look at  and , there can be a

problem right? So, these two will be distinct inside , but cannot be separated by open sets.

Argument is similar to what we have before. Therefore,   must be increasing okay?

from  to . This is the what we wanted to happen, so, that completes the proof of

this lemma okay? 
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So, now we can consolidate the whatever observation we have done so far, in the form of

another  lemma.  Let   be  a  connected  -manifold.  (So  far  connectivity  of   was  not

necessary,   is automatically Hausdorff okay? Now, I want to make a clear picture.) Now,

let us take a connected manifold , having an atlas consisting of only two members. Then I



want  to  write  down a  complete  description  of   upto  a  homeomorphism.  So,  only  two

members . Assume that  are both proper subset of  (strictly speaking

this condition is not necessary.) 

(i) Then their intersection  is non empty and has at most 2 components. (This much is

what we have seen already okay?) 

(ii)  If you   has only one component, then   is homeomorphic to an interval. Of

course an open interval because we are assuming all the time that  is without boundary.) So,

this is part of our first lemma which we did yesterday.

(ii)  has two components then  is homeomorphic to . 
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This is  the second lemma that  we had okay? So, this is  nothing new here.  But let us go

through this one again carefully. So, we are claiming that   non empty, first of all.

Why? Because if there are only two open sets covering , if they are disjoint would mean 

is disconnected okay? So it must be non empty. That part is slightly new. And then it can

have only one component  or two components  okay? So, this  part  (ii)  is  exactly  same as

lemma 6.4 and 6.5.
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So, the third part. Here you may assume on one of the components, okay?   from

 to  is increasing. This much is seen in the previous lemma, actually, I do not have

to  repeat  it.  It  follows  that  on  the  other  component   is  from   to  .

Applying the same reason to its inverse, it follows that this is also increasing. Therefore, we

are in a situation of lemma 6.5. Okay, the conclusion follows. 
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So, now, we can continue with the proof of the theorem. Earlier we had labeled the open sets

  such that that  is not contained in the union of the previous ones.  and

so on. Actually all that was not necessary, because, we are now going to prove  something

stronger than that which is necessary. That is the I step.

By  second  countability,  we  have  a  countable  open  cover   of  ,  each   is

homeomorphic to an interval. We want to arrange them in the following way. What is this? 

(i) There exists countable family   such that each   homeomorphic to an interval this

part is Okay?

(ii) Second one is that the  member is not contained in the union earlier   members,

which I am denoting by . This is the definition of . 



(iii)  intersects  for . 

(iv) Finally the fourth condition is: if  is not the whole of , then it is homeomorphic to an

interval.

So, this is what I am going to claim okay. So, this is my first step okay. Let us see how we

prove this one.
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To construct this, we start off with any one member from the family , call it .

Having picked up   so as to satisfy our  requirements  (i),  (ii),  (iii)  and (iv),

inductively, okay, then I want to pick up , we check first of all whether  which is the

union of  's up to  , is the whole space   or not. If it is the whole space there is nothing

more to be done.  Even if, there are other members in the family,  they are all contained in

. So, we stop. Otherwise, it means that there are members  not contained in . Okay, if

none of them intersect , then what happens?  will be the disjoint union of two open sets

viz.,   and the rest of the  ’s. That would mean that   is disconnected. So that cannot

happen. So, at least one member which we have not taken yet must be intersecting  and

contained in . Okay? 

Label that one as  Okay? This  is not contained in , but it intersects . Okay?

So, (i), (ii) and (iii) are satisfied upto .
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By induction hypothesis,  is an interval. I want to show that  is also an interval okay?

Provided it is not the whole of . okay? So, this is what I have yet to prove. 
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Essentially,  there  are  two  cases  to  be  considered  depending  on  whether  the  number  of

components of  is one or two. This follows from a previous lemma. These are the

only two possibilities. Okay? Again by the previous lemma, it follows that if there is only one

component  then   is  homeomorphic to  an interval,  being  the  union of  two intervals

patched  up  along  a  common  subinterval.  And  if  there  are  two  members,  it  will  be

homeomorphic to a circle, full circle right? If it is a full circle, what happens?  will be

both open as well as closed in  . But   is connected. So,   is the whole space. If I

assume that  is not equal to the whole space , then it cannot be a circle and hence



must be an interval. So therefore inductively all these things have been satisfied for  now.

That means the construction of step 1 is over. 
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So let us finally complete step 2. Step 2 is to analyse what happens when we keep on running

this one infinitely. If it stops at any finite level,   then  is equal to   and there are two

case, either it is an open interval or a circle so the problem is over. If it keeps on going for

infinitely terms, then what happens? That is the case right? So, to analyse this case, we fix a

homeomorphism   from   to  . Okay. Pick some homeomorphism because   is

nothing but . From the lemma 6.5, it follows that  is nothing but 

and hence has at most two components each of the form  or  right? Accordingly,

we can extend  to a homeomorphism  from  to a larger interval than  either on

the left side, say onto , or on the right side, say , which on you do not know but

only one of them. The same will happen at each . So, both ways you have to keep extending

 to  from  to some larger and intervals.

Suppose you have constructed the homeomorphism  from  to an open interval,  

where  are some integers. (Remember each  is a proper subspace of . It may not be

a subspace of , we are constructing homeomorphisms of 's into open intervals inside ,

Okay?) 

 maybe coming and intersecting  the left  side of  the interval  or  the right  side of the

interval. Accordingly you have to extend  to . Thus what we get, inductively is that 

will  be smaller than or equal  to  . Similarly,   will  be smaller that or equal to  .



Beginning with  , and  , all   will be negative and all   will be positive. So,

they are all integers with one additional property that the difference between  and

 is   okay. Therefore, okay once you have extended this way from  to   and

 to   we keep extending like this just the way we have extended   to  

Okay.
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So, we have this sequence of homeomorphims  , each   being an extension of  , we

have to understand what happens in the limiting case. Let  be limit of the sequence  and

 be the limit of the sequence . It is possible that one of them becomes a constant after a

certain stage but not the both, or both the sequences are unbounded. Accordingly, we have

three cases. (i) either   is a negative integer and   is   or (ii)   is   and   is a positive

integer, or   is   and  is  . In all these cases  is an open interval in  , of infinite

length.

Whatever it is, we define  from  to  by the rule , where  itself is in .

Once it is in , it is also in ,  etc. But  will agree with , etc, so  is

well defined okay? So  is well defined on each interval, and is a homeomorphism already.

That holds for the entire  also. Finally, you can compose  with a homeomorphism of 

to , because any open interval or an open ray is homeomorphic to . So, conclude

that  is homeomorphic to an open interval.

So finally, starting with a connected  -manifold, (which is Hausdorff and II-countable) we

have shown that it is either homeomorphic to  or to the circle okay? Now, finally to sum



up, we have already taken care of the case of   having non empty boundary. How did we

complete the proof? The boundary may consist of just one point, which could be   or  , it

may have two points. The boundary points can be at most . Okay? So, in either case,  will

be one of the two things,  the , since  is anyway homeomorphic to . This

completes the entire classification problem for -manifolds. Thank you.


