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Last time, we proved one of the hardest results about topological manifolds, namely, if any

closed subspace of  is locally contractible then it is a neighbourhood retract.

(Refer Slide Time: 00:40)

By the very definition, a manifold is locally Euclidean and locally Euclidean means that it is

locally contractable. By the embedding theorem which we proved partly and which we are

assuming that every manifold is a subspace of  for some . Combining these two results



and we can derive a few homotopical properties of arbitrary topological manifolds. So, let us

take care of some of them. So, this is the first thing that we derive: 

Any topological manifold is a retract of a locally finite countable CW complex , of some

finite pure dimension . Moreover, if  is compact, then  can be chosen to be finite. So,

this  is  the  basic  theorem  that  we  have  we  can  derive  it  from  whatever  we  have  done

previously.
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Start with an embedding of  in . Take a neighbourhood  of  and a retraction  from 

to . So, this is what the earlier theorem allows us. In fact, that theorem was more elaborate

only  weaker  version  of  that  we  are  using  here.  There  is  a  neighbourhood  and  that

neighbourhood and a retraction is there is all I am using here. Now, go back to result giving

CW complex structures out of lattice structures. That will be used again.

Let  be the collection of all -cells in  which intersect  and which are contained in . If

an  -cell is too big, we do not want them in  , they must be contained inside the open

subset  and they must intersect . From this , delete all members which are contained in

some other member of , to get the sub collection .

Once a big -cell  is taken inside , no smaller -cells will be taken inside . Faces of 

will be taken of course. Put   to be the union of all members of  . (This   is

different from the  of the previous theorem by the way. Do not confused that one which

was . Here it is a which is a neighbourhood of  itself, though not an open set. Then 



is  contained  inside  this   which  is  contained  in,   because  all  members  of   are

contained in .  
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There is a retraction  from  to , so, you can restrict  to . And our previous result

tells  you   has  all  the  prescribed  properties,  namely,  it  is  a  countable,  locally  CW

complex of pure dimension . Pure of dimension  means what? All the cells in  are

contained inside some  -cell in  . That is obvious because we have started with the

union of all the -cells in  and then take faces of them in giving the CW structure.

From the local finiteness of , it also follows that  is finite if  is compact. For each point

, there is a neighbourhood  which intersects only finitely many -cells will intersect.

As  varies over , all members of  are accounted for. Since  is compact, we can take a

finite subcover of   and these finitely many neighbourhoods will tell you that there are

only finitely many members in . That gives  is a finite CW complex. So, this big theorem

comes without much hard work now.
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Now, an interesting corollary is that the fundamental group, and the homology groups of any

manifold  are all countable and if  is compact, they will be finitely generated also. You

may notice that every manifold has at most countably many path components. So, without

loss of generality, we can and do assume that   is path connected. It immediately follows

that  is also path connected. 

So, what is the proof? It is very straightforward from the theorem. We have a retraction  

from  to . If  from  to  is the inclusion map,  is a retraction means what?  is the

identity of  . Passing to the fundamental group level, we get   is  . On the

fundamental  group level what is  that?   goes to   under   and then  

comes back to  . In particular, this implies that   is surjective. The composite is

identity map implies this must be surjective. 

But  is a countable CW complex. So there are countably many generators of . Indeed you

have look at only the -skeleton , which has only finitely many -cells. Alright? Any group

which is  generated by a countable set  is  itself countable.  Therefore,   is  countable.

Since  is surjective homomorphism, it follow that  is also countable. 
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For the next part, suppose   is compact then we have seen that   can be chosen to be a

finite  CW complex.  Then  the  -skeleton  is  finite  therefore,  there  are  only  finitely  many

generators of . Since  is surjective homomorphism, the same holds for  also.

So, this is about the fundamental group. The argument is ditto for homology group as well.

Instead of  if you put . The CW chain groups of  itself are all countably generated and

vanish beyond dimension . And in the compact they are finitely generated also. So, the

same conclusion holds for homology of  as well as . 
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So, you should be happy now that we have proved a very useful result. So, here are few

examples and exercise for you, which you can try out of course. Always there will be team of

tutors who will help you out. 

(Refer Slide Time: 10:51)



Now, let us go to the next topic. Let us begin that topic of classification of  -dimensional

manifolds. It will be again somewhat lengthy topic. So, this is again another very useful topic

on which we can put our hands. And you will feel that you have learned something. 

So, more generally, let us look at any classification problem in science. First of all what do

we do? We have to collect samples, plenty of them. And when we are somewhat sure of

having collected a large variety of these samples and we feel  that it  must be covering all

possible all variety of objects, then only we go for a systematic classification of members.

Namely, we must decide upon the meaning of classes by specifying certain properties such as

connectedness or compactness and so, on in our case. 

For instance, in biological classifications, we specified what is a protozoa what is vertebrata

and so on animals were classified into various phylums. So, the final step will be that you

should  determine  all  possible  `mutually  different  types'  of  objects,  the  classes  must  be

mutually disjoint. 

In all possibility, in the run for that, you may find that you have not collected yet one or two

types of probable objects. Your study is pointing at probable existence of more types than in

your collection. So, you search for such objects. What do you mean by search? Any scientific

study always leads to such searches. Just like how the classification of fundamental elements

in Chemistry. So, when you systematically carry out the search you may feel that there must

be something missing here. So, you search for it and then actually find those missing objects!

That is the way, by trial and error, any scientific classification is carried out. 



Now coming back to the study of manifolds. Any manifold is locally connected and hence, its

connected  components  are  all  open  as  well  as  closed.  Therefore,  every  manifold is  as  a

topological  space,  the  disjoint  union  of  its  connected  components.  Therefore,  studying

connected manifolds is enough. why?

Because then you can take disjoint union of the members you have listed to get any other non

connected manifold. So, we always consider only connected manifolds. This is not the case

with compactness. There is no way of actually reducing the general classification to compact

case, though understanding the compact case fully is a must and will help in the general case

of non compact manifolds. However, considering the compact cases first simplifies our task

for technical reasons. So right now, as far as  -dimension manifolds are concerned, we are

only putting connectivity condition, that's all.
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So what are examples of -dimensional connected manifolds we have. You have to collect the

samples first. So, you can take any open subset of . They are manifolds.  itself is one. Any

open subset of   which is connected. So, they are only open intervals. But now there are

different kinds of intervals, open intervals, half closed intervals and closed intervals. And that

is the end of all types of connected one manifolds inside .

So, by the why did we not specify the end points of these intervals. Within this collection of

samples, we note that any two open intervals are homeomorphic to each other, whether finite

or  infinite.  Similarly  any  half  closed  interval  is  homeomorphic  to  any  other  half  closed

interval. Any closed interval, is homeomorphic to any other closed interval. This much we



know already. Actually there are linear homeomorphisms between any two of them in each of

the above three cases. From a finite interval to an infinite one, we have maps such as   to

, which gives gives you a homeomorphism from  to the whole of . So,

equipped ourselves with these informations, we are sure that there are only three types of

manifolds dimension , which are connected and which are inside , viz., open intervals half

closed intervals and closed intervals.

What happens when you go out of  ?  Just  go to  .  There  are  many other kinds of  -

dimensional manifolds there. All conic sections will come, circles, ellipses, parabolas and so

on. A pair of lines, of course, if they are parallel then they are -manifold but not connected,

otherwise they intersect and hence they are not manifolds. Similarly hyperbolas have two

connected components each of them is a -manifold.  

You immediately perceive that parabola, hyperbola and pair of non intersecting straight lines

are all covered by the real line itself each being either homeomorphic to  or two copies of .

Circles and ellipses form a different  type.  Of course you also know that  all  of  them are

homeomorphic to each other and hence form a single class, even though geometrically  a

circle is a different type of object from an ellipse. 

Next we can consider triangles. No problem. Again they are all homeomorphic to a circle.

Same is true a square, a pentagon, boundary of any convex polygon.

So this way we can keep on collecting more and more examples and while doing so, check

whether they form a new type. However, we seem to get no more types, even if we go to

 etc. You may have very twisted curves having no specific shape or geometry. But we

do not seem to get any different types of connected -manifolds. So at this stage, we would

like to ask whether we really have reached the dead end.
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So,  do  we  get  any  other  types  of  -dimensional  manifolds  if  we  look  for  them inside,

 and so on? We do not have to look outside Euclidean spaces, because any

topological manifold is a subspace of . In fact, everything -manifold will be inside some

 itself, though we have not proved the embedability of any -dimensional manifolds inside

. A pleasantly surprising answer is that we have already exhausted the list-there are no

more of them.
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So here is a statement of the theorem which we would like to prove. While proving we may

get some other insight and then maybe we find a new type that is possible of course, but this

is a conjecture. So, this is in a conjecture format. This is what we want to prove what is that

that?



Let   be  a  connected  -dimensional  manifold  (remember  that  they  Hausdorff,  and  II-

countable, that is in the back of our mind). So, here I am stating a result even for the smooth

case also, but you can ignore the smoothness part right now. Then,   is homeomorphic to

one of the following four types: open interval , half-closed interval , closed interval

 or the circle . One can easily see that each of these type is a different one. They are

themselves not homeomorphic to each other.

If they were, then I would mention them separately in the list. I will cut down my list. The big

problem is to prove that this list is complete. Why there is not a fifth element here? That is

the hard thing to prove.

So, in particular what does this mean? Suppose boundary of  is empty. That happens only

for the first and the last members. For the second and third, the boundary is non empty. So,

we must first of all prove that any  -dimensional, connected manifold without boundary is

homeomorphic to the open interval  or the circle . Suppose, we have proved this part.

Then we can complete the proof of the theorem by considering the case when the boundary is

non empty. This can be done in different ways. Here is one method.
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Let  be a -dimensional connected manifold with non empty boundary. Its interior is again a

-dimensional  connected  manifold  without  boundary.  Therefore,   must  be

(homeomorphic to)   or the circle . Do you agree? Now can the circle  be the interior

of a connected manifold with boundary? 



In that case   being homeomorphic to   is compact subset of   and hence a closed

subset of  . The boundary points of any manifold are in the closure of   and so the

whole of  is equal to . That is a contradiction.

So we are are left with the case when  is . Yes, this is possible of course. You just

look at this list. The list itself tells you two such possibilities. The open interval  is the

interior of both   as well as  . Are there any other possibilities for  ?   could be

.  But   is homeomorphic to  by the reflection in the point . So, that is not a

new one. 

So, it  can be very easily seen that you cannot have a third point as an interior point as a

boundary point  of this.  A detailed proof is  given in the slide.  (However,  there is  a typo,

replace  by ). The argument used here will be repeated again in the sequel. So, for

today let us take this for granted.  

 

Next time we will continue with the proof of the first part. Thank you.


