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So, far, in the study of manifolds, we introduced the notion of a topological manifolds, gave

some examples and then introduced the notion of manifolds with boundary also. We have

also shown that every manifold is paracompact including the manifolds with boundary. We

also  showed  that  the  boundaries  of  a  bounded  manifold  have  what  are  called  Collar

neighbourhoods. So, today we shall study some homotopic aspects.

A key  to  that  is  the  result  that  every  topological  manifold  is  a  subspace  of  some  large

Euclidean space. That is the meaning of embedding. So, every manifold can be embedded

inside a Euclidean space. So, as such, it seems that in the definition of a manifold, we do not

have to go out of  ,  and could have taken only topological  subspace for   which are

locally Euclidean, such as a circle or a spheres union of lines and so on.  

However, in practice what happens is manifolds many not arise may not occur naturally as

subspace of . They arise in different forms, especially when as quotients of some familiar

objects. Then it is a burden to see them first of all as subspaces of  even before identifying

them as manifolds. So, the abstract definition has this advantage. 



So, let us anyway do this embedding theorem, which will itself help in the study of other

aspects of manifolds. As we shall see this single result has several implications on topological

and homological properties of a manifold. Being a subspace of some Euclidean space is itself

something very special. 

Every  -manifold is homeomorphic to a closed subset of  . Start with a manifold of

dimension  . Irrespective of how complicated it may be, you do not have to go for a very

large  to get an embedding into  will do. So, this is quite tight. There are

examples wherein you may not be able to do it in  or even lower than that. So, we should

stick to that. 
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For every topological manifold , if you looked at all the embedding inside  is dense in

the space function space . What is this function space, all continuous functions from

 to . Out of which you take only the embeddings, that subset would be dense in the

entire space. The topology on this function space is the compact-open-topology, or you can

call it the topology of uniform convergence. 

If you want to closed embeddings, then you have to take  to be a compact subset because

 is compact and closed subset of a compact set is compact. So this is the result. I have

chosen not to prove this result. The proof is quite lengthy and complicated and not very

illuminating either. Therefore, we shall only state a very mild form of this theorem, only for

compact spaces and we shall be liberal with this the dimension as well namely  for some



large  and not bother to find one which depends only on . So that is what we are going to

do now. 
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However here is reference. The proof of these theorems are somewhat lengthy. You know

there are smooth versions which are slightly easy. They are under the name easy Whitney

embedding theorems which have easier proofs also. You may read them from many books

such as my own book on differential topology. 

However, for the topological case, there are not many references available you are welcome

to see this in an excellent old book by Hurewicz-Wallman. I have given the reference here. It

is a wonderful book. Or you may choose to read a nice proof of embedding theorem 6.3 from

Munkres' book. We shall be satisfied with an easy proof of the following weaker version. 
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Namely, every compact manifold (with or without boundary) is homeomorphic to a closed

subset of some Euclidean space  . So, we are not bothered about how large   has to be

taken and that is why the proof is very easy. Let us see how. For each , choose an open

neighbourhood of  of  and a homeomorphism  from  to , where  is the whole

of   or the whole of  , according as x in in the interior or boundary of  . Since   is

compact, there will be a finite atlas and we label them . 

Let  from  to  setminus the north pole be the inverse of the stereographic projection 

from  setminus the north pole to , which we know is a homeomorphism. Now look at

 from  to  and let  from  to  be the extension of  composed with  which

sends the entire of   to the north pole. Arguments involving  -pt compactification or

imply using properness of homeomorphisms, you can easily check that  are continuous.

Put  equal to the product function  from  to  (  copies), I have

got  some  continuous  functions  .  What  is  the  property  of  these  continuous  functions

restricted to each ? They are one-one mappings, they embeddings, but outside of , they

are constant functions. But look at . We will see that this map is finally what we want. It is

an embedding of  into . 

It is enough to verify that   is one-one. Then since  is compact, automatically   will be a

homeomorphism on its image and hence an embedding, since the codomain is Hausdorff.

The proof will be over. 

Verifying that  is a one-one mapping,  I have left to you as an exercise in the slide. But now

I will do that in a minute. So why is  a one-one map tell me. You ask why it is not. For that

there must two distinct points  in  such that  If both  and  happened to be

inside the same , then  will be different from ,  is injective on  But then 

not equal to . So  is in  and  is not in . But then  is not equal to  which is

equal to the north pole. Therefore once again  not equal to . 

So, now we will use this property that every manifold can be realized as a subspace of some

Euclidean space, even though we proved it only for compact manifolds. 
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So, in order to derive some homotopical and homological properties of manifold, the first

thing we prove is the following theorem and perhaps this is the only result that we can prove

today. So, have some patience because this is slightly longer. 

Let  be a locally contractible, closed subset of  and  be an open subset of  such that

 is inside . That means this  is a neighbourhood of our subset . What is the assumption

on ? It is a closed subset and it is locally contractible. Then there is an open subset  of 

such that  is inside  contained in  and a retraction  from  to . In other words, every

closed subset of  which is locally contractible is a neighbourhood retract. 

In fact,  you can say that  it  is a deformation retract  and so on. That  is  what leads to our

concept of co-fibration etc. I am not trying to prove such a strong result here. Only retraction

every  closed  subset  which  locally  contractible  is  a  retract  of  a  neighbourhood  and  that

neighbourhood can be chosen as small as you please this is the meaning of this theorem. 
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Let us see how we are going to do that. So, recall our notation and lemma for the so called

lattice structure in . Remember that, it was used to obtain examples of CW-complexes and

so on and while proving CW-approximation theorem we have used that one. So, let us recall

them from Module 4B.  

So,  this   is  fixed  integer,  .   denotes  the  set  of  points  ,  all  of  whose

coordinates  are rational numbers  of the form an integer divided by . So,  is the the set

of so called lattice points, with all coordinates as integers,   has points with cooridanates

half integers and so on. The lines planes you know drawn at length at the interval  at all the

integer points  will be at half integer points. 

Let  denote set of all closed -cubes sigma of  side-length  with their corners inside

 and  equal to union of all 's. I am just recalling all these things which we have done

earlier in Module 4B and we restate a theorem for our ready use here.
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(Editors  note:  The  speech  diverts  quite  a  bit  from the  slides  here,  almost  reproving  the

theorem in a slightly different way but for the proof of the theorem either of them will do. So

we keep both versions for the benefit of the students.) 

So a lemma: Take a subset  of  such that  and  belong to  implies  is not contained

in . (Remember that these 's are -dimensional cubes of differerent sizes in . So, for

instance if we have -th size cube a -th size cube it is likely that the second one may

be a subset of the first one. That should not happen. They may intersect each other. That is

allowed.) Let  be the  union of all the 's belonging to . Then the subspace  of

 has a locally finite, countable, pure, -dimensional CW-complex structure with all its -

cells being precisely the  members of . 

We have seen that this CW-structure  actually  can be further  `cut-down' into a  simplicial

complex by cutting each  -cube into a simplicial complex. So, that is  the lemma that  is

relevant for now. We directly go to the proof of the theorem. I have to produce this open set

 as well a retraction .  
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So, let  be collection of all cubes in  (  is what -cubes of side length , with corners as

integer coordinates) contained in  and which do not meet . This set may be empty, I do

not care. Let  be the collection of all cubes in  contained in  and which do not meet 

and not contained in any member of . Inductively, for , let  be the collection of all

those cubes in  contained in , not meeting  and which are not contained in any member

of , for . Put  equal to union of all 's. 

Let  be defined as the lemma. By the very definition  will satisfy the condition

of this lemma, namely,  and  are in , will imply that  is not contained in . Once a

cube is  admitted inside  ,  no smaller  cubes  inside it  will  be taken.  So, that  is  why this

condition is automatically satisfied.

Therefore, we can apply the lemma.  will be defined as the union of all  .

Clearly,  is a subset of .  has a CW structure in which all these -cubes of various

sizes in  . Given any point  , which is open in  , we can choose   sufficiently

large so that there is a member sigma of   which contains   and   contained in  .

Therefore,  belongs to  and  belongs to . Therefore, . 

Put  equal to the union of all cubes  for . Then each  will be a closed subset

of , being a union of a locally finitely family of closed sets. Also = union of all . So

the funny thing here is that to begin with we are not doing anything to  but the complement

of  in  has been given a nice CW structure, these cubes of various sizes all of them -

dimension cells, smaller and smaller maybe smaller which keep coming nearer and nearer 



but will not intersect it.
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So, that is what it is now. Let us see how we shall construct an open neighbourhood   of 

in  and a retraction  on  which will complete the proof of the theorem 6.6. First we are

actually going to construct a subcomplex  of , and a retraction  from  to . (Here

we take the liberty to write the same symbol  for the complex  as well as the underlying

subspace ).

We shall then show that  contains an open set  which contains  and  is continuous

on . That may be a wishful thinking and it takes sometime to prove each of them. Let us go

ahead  with  this.  First  the  constructions  of   and   will  be  done  simultaneously  and

inductively, keeping in mind that  should be continuous on a suitable subset.
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Of  course,  we  start  with  ,  because  there  is  no  other  choice,  since   has  to  be

retraction onto . So, . Take the -skeleton of  to be  (Do not confuse it for

.) We are going to define a subcomplex of  of . So, take all the -cells of . These are

some lattice points, away from .  

Given a -cell , choose  to be any point in  such that the distance between  and 

is less than twice the distance between   and  . Remember   in   does not intersect  

which is a closed set so the distance is positive. Here the distance between two subsets 

of  is nothing but the infimum of all  where  ranges over  and  ranges over .

Therefore such a point  exists.    
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The construction of  and  from  to  is over. Actually, here you can easily see

that this  has to be continuous function because on  it is identity and  is discrete. But

let us not discuss continuity right now. Let us go ahead. Having defined  and  from

 to , first of all, let us take  to be any -cell in  such that its entire boundary

is contained in . You know  is a -dimensional box, its boundary consists of -

dimensional boxes. (For instance, for  , you could select any  -cell in  , because you

have admitted all the -cells of  inside . But wait.) 

Now look at  restricted to , which is already defined by the induction hypothesis. If this

extends continuously to a function from  to , then and then only admit   inside . In

general, we do not know if there is such a continuous extension. So this is a non-vacuous



condition. If  there is no such extension, do not take this cell  in .

 Now, choose  from  to  to be any continuous extension which satisfies the property that

amongst all such continuous extensions , you must take one such that distance between 

and  is less than twice the distance between  and  for all such extensions . 

You see if you take the set of all distances between  and  where  ranges over the non

empty set of continuous extensions of  restricted to , and look at its infimum, it will be

positive being bigger that distance between  and . However, we do not know whether this

infimum can  be attained. So, I have doubled these distances  so that  one of them among all

extensions   from  to  , will definitely satisfy this condition, because a positive number

cannot be smaller than twice itself. So, there must be one  which satisfies this property. We

can now extend  over the whole of  continuously. By induction, the construction of 

which is equal to union of all its skeletons  and  is over.

It remains to prove a number of things, that  contains a neighbourhood  of  and 

is continuous on . Once you have done that, the proof is over. So, let us do that. 
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Note that by the very choice  is continuous on  because for any CW complex a function is

continuous iff restricted to each cells it  is continuous. So, we have to verify continuity at

points of . You see  restricted to  is identity. That it is continuous on . However, that

does not mean that as a function from  to  , it is continuous at  . So many people

make this mistake, since  restricted to  being identity continuous. (The trouble is because



 is not open in .) 

But  we  do  not  need   to  be  continuous  on  the  whole  of  .  So,  we must  achieve

continuity at points of  but we may cut down the space . Remember that. So, given 

belonging to   and   positive, let us put   equal to  . So  go on choosing   in the

reverse order, for  till you hit , such that  is less than .  

Put   equal to  , where   is the the standard open ball in  . Further, we

need  to satisfy the condition that inclusion map  to  is null homotopic. So, how do

you ensure this? This is where local contractibility of  has to be  used. What is the meaning

of local contractibility: given any neighbourhood of  any point in , we must have a smaller

neighbourhood such that the inclusion map of the smaller  in the larger one is null homotopic.

So, I do not say that this  is exactly one third of . No, it is possible to choose  smaller

than that so as to satisfy this homotopy condition also.  

Let  be  where . After choosing the last , I am going to further divided

it  and take a positive  smaller than that. As a step toward continuity, we claim that if  is

any cell  of  ,  contained in  this  ,  then   will  be  automatically  in  ,  and the distance

between   and   (remember that   was some point  of  )  will  be less than  .  The

original   looks very big now, because we have come down to . We shall prove this by

induction on the dimension of the  , by proving slightly stronger claims in the inductive

steps. 
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Suppose  is a -cell in  and . Already by definition  and so  belongs to .

Now the distance between   and   is  less than the distance between   and   plus the

distance between   and  . Since   and   are inside  , the first term is less that   and

second one is, by the definition of , less than twice distance between  and . So the sum is

less than , because . Of course  is less than . So, the inductive step for  is

proved. 

Now, suppose for all -cells  of   contained in , we have proved that  is in  and

that distance between  and  is less than . We want to prove this to be less than  but

we need to have this stronger inductive hypothesis to go to the next step. Any way we have

proved it for -cells. Let now  be a -cell of  contained in . Then boundary of  will be

contained inside  from the induction hypothesis since the boundary of a -cell in  is

the finite union of  -cells  . Also, we have the inclusion map   to   is  null

homotopic. (That is important now.) Therefore, you can always extend  which is defined on

 to a map on  into  continuously. So, first of all  belongs to . Moreover,  from

(43), it follows that the distance between  and  will be less than .  Therefore, once

again, the same thing happens here, viz.,  is less than . This is

always  less  than   and  the  second term is  less  than   so  the  sum is  less  than  .

Therefore, by induction, we have proved the claim, because   is always less that   for all

.
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Note that this however does not complete the proof of continuity of   at  . Nor does this



prove that   contains a neighbourhood of   in  . But this is a good step toward

continuity.  We have to prove one more step for we have not yet  proved that   itself is

contained inside . Since  may have many points belongings to the cells  in  where 

itself is not completely inside . 
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So, we claim that there exists  (depending upon  as well as ) such that if

any cell   of   intersects  , then the entire cell   is contained in  . This would clearly

imply that  is contained in , since we have proved earlier that  is contained

in . Therefore the  continuity at the point  for the function  from  to  follows. 

By choosing  to be any fixed number, say  for all , and taking  =  union of all

, we get an open subset of  which is a subset of  and contains . This will

then complete the proof. So, it remains to prove the existence of  as claimed.
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So,  if  this  is  not  the  case  what  happens?  That  means  that  there  exists  a  sequence  

converging  into  infinity  such  that  none  of  the  numbers   satisfy  this  property,

meaning, there are cells   in  such that  intersects both  as well as . In particular,

this implies that the diameter of   is  bigger than   for large  . viz., for all   such that

. Note that the diameter of any  -cells in   is equal to  . So choose an

integer  such that diameter of any -cell in  is smaller than . Then none of these  are

in  for any  and hence they are contained in . But  has a positive distance say,

 from . Therefore if , it is a contradiction to the fact that  intersects .

This proves the theorem 6.6.

Using this theorem, next time we shall prove one of the very important things answering a

question  that  we  had  raised  earlier,  namely,  whether’  the  fundamental  group  of  any

topological manifold is countable. 

That is the homotopical aspect of this one that is what retraction is already some kind of

homotopy though we have not proved that it is a deformation retraction, that is not needed.

So, let us stop here. Thank you.


