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So, now, we carry on with more examples of CW complexes. For any subfamily   of  -

cubes in  , not necessarily finite, we have this notation  equal to the union of all  -

cubes sigma which are present in  . We also have this notation:   is the subfamily of all

those  inside  which are maximal; what is the meaning of that? If  is contained in  and 

is also in   that means   is equal to  . That is the meaning of maximal; only the maximal

elements of   are taken in  . Then clearly the union of all the members of   is equal to

union of all the maximal members of . 
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So, this is where we use this fact.  Remember that we have seen that interior of  intersection

with interior of  is non-empty implies either  contains  or  contains . Either they are

non-overlapping completely or one of them is contained in another. Now we can take only

the maximal ones to take care of the entire union. 
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Now, here is the extension of the earlier example for infinite case. So, earlier we had this

example only for one . Now, I am taking any finite number of members of . Let  denote

the collection of all -faces for , of members of . (Earlier there was only one .

Now, I am taking a finite collection .) Then we can choose a function  on this family 

which is an integer valued function satisfying condition (i) and (ii) of example 1.7., properly

modified. 
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Let me recall what are these conditions:

(i)  is greater than equal to  for all , whenever  is a member of ;

(ii)  is contained in  implies .

So, this must be true for all members of these . So, those are the condition (i) and (ii). Then

the CW structures  coming from example 1.7 patch-up to define a CW structure on ,

so, that the -cells are in one-one correspondence with members of  This is the statement

of the lemma. 

There in that example, we started with a function  with these two properties. But we did not

say  anything  about  whether  there  is  one  such  and  so  on.  In  fact  there  are  many  such

functions, but here I say we can choose a function  satisfying these two conditions. I am not

saying  that  this  will  be  so  for  any  arbitrary  function.  Anyway condition  (i)  and  (ii)  are

necessary even to have a CW-structure on each , viz., the structure  

So, once you have such that function, on each  -face of  , we will have a CW-structure.

Now, the claim is that if  is chosen properly, then these  structures on each of  will patch

up to define a CW-structure on  itself. So this is the claim. Not only that, the second

part says that the -cells of this structure are precisely the members of this , the maximal

members of  .  So, if you understood the   in the earlier  example,  this will be an easy

consequence of that. 
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So, let me write down the formula, what is the function ? Given  in , let  from  to the

set of natural numbers be the function defined as follows: take  to be the set of all those

 in , the maximal members of , such that they will intersect the interior of . There is at

least one such  because each  is the face of some member  of  and hence  intersects

interior of . But then  is contained in some member  of .

So, this set is non-empty. Of course, it is finite also. Thus the set , first of all is contained

in  and is a non-empty finite set. Therefore, we can take  to be the maximum of all  

such that  is not empty.  Each member of  belongs to some  put all such  in

this set if  intersect of  is non-empty. That set is also nonempty and finite. So, take the

maximum of this set, it is some positive integer. This defines .  

As  varies, this  will take different values. That does not matter. What you have to see is

that it satisfies the condition (i) and (ii). Note that if  is equal to , a member of some  as

well as it is in  , then   because then the whole set on which we are taking the

maximum itself is just the singleton . 

By the definition of  is a maximal one. So, the set  will contain only one member

viz.,  . So, that is the only member and hence   will be  . We have to see that this  

satisfies the two conditions (i) and (ii) in the above example. 



The point here is that I have put here the condition that the interior of  intersects this . That

is a trick here. So, if you take  intersection interior of  non-empty and say  is a face of ,

this will be true for  also. So, all those cells which are present in  will be there in .

Therefore, the set will be bigger set for  than  which means that the maximum is bigger.

So,   contained   will imply   is bigger than equal to  . You have to verify this

fully. Hopefully you will be able to do it on your own now. Any way I have explained the

second condition also, you can see what happens. 
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So, now the crucial  thing in the lemma namely you claim that the CW-structures   as  

varies  over  ,  patch up to  define a  CW structure  on  .  So, we want  to do this by

induction. Suppose   has only one member that is  already covered  in  the  example.  So,

therefore, we just want to do induction here. 

Let  equal to  be an enumeration of members of .  is a finite family. Let

us set the notation  equal to union of those  for .  is just  is  and so

on. So, we induct on this number . If this  is 1, we know the result already, there is nothing

to prove nothing to prove means what we have discussed this in the example 1.7. 

Inductively, assume that the structure 's patch up to define a CW structure on , and that

structure is temporarily denoted by   coming from  . Put  , take the next

member here intersect with  put  equal to that. If  is empty, you have two disjoint CW

structures, union is automatically a CW complex in which  structure will be kept as it is



and   structure will be kept as it  is. Both of them will be subcomplexes.  There is no

problem. The problem comes when  is non-empty, if at all.
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So, suppose  is non-empty. The idea is to use our earlier lemma. So, let us denote the CW

structure on  coming from  by  and the coming from  by . What we wanted is

that either  is finer than  or  is finer than . Then we could put them together. So,

that was our earlier lemma.

So, here we claim that  is actually equal to . So, you can patch it and then induction will

take care of it. So, let us look at this. What is this ?  is the intersection of  with .

This intersection never contains any interior of  , it is only some part of the boundary

because both are made up of maximal -cells. 

So, it is the boundary part of . Any part of the boundary will be made up of -faces of

 for   strictly less than  the dimension of  , and hence is the union of some proper

faces,  of . On each of these , the CW structures coming from either side is precisely

equal to that coming from . 

By the very definition  , the maximum of all those  , where   contains some   which

intersects the interior of . This proves that  is , Because both are actually equal to the

; they do not depend upon whether we consider  as subspace of  or of . 



From the lemma 1.3,  it follows that   as a CW structure, which will denote by .

Clearly,   is a sub complex. So, the structure keeps extending as you extend the space

itself. So, that completes the proof that  has a CW structure as proposed. 

This time instead of one cell , we have now got it on the finite union of -cells. 
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So, it should be noted that the final structure on   which is denoted by   does not

depend upon the enumeration we have chosen on the members of . And for , each 

is a sub-complex. So, it depends only on the collection . Once  is chosen no matter what,

the enumeration is only for our convenience of writing down the proof.  
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So, let us now go for the infinite case. This is our final aim. Let  be a family of members of

 such that   is locally finite. So, we are not in a completely general case.   is not any

infinite family, that is not our aim, that is not possible either. So, we allow  to be infinite but

 to be locally finite. Let  consist of all -faces, , of all members of . 

Then there exists a function  on  to the positive integers such that the CW structures  

patch up to define a CW structure on . Here,  I am not saying that explicitly

that the function  satisfies (i) and (ii). So, it should satisfy these conditions, because   is

defined only when  satisfies these conditions. So, here the finiteness is not there you see, so,

we have to be little more careful, but it is not at all that difficult. 
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We start off as in the proof of the previous lemma. So, let   denote the collection of all  

faces of all members of . Observe that each set  is defined as in the above lemma. 

equals to the collection of all   in  such that  intersection interior  is non-empty. This

 is the same thing. By local finiteness of , (  may not be finite) 

Each  is finite. Therefore, as before we can take  to the maximum of this finite set.

Therefore, we have the function   and it  has satisfied the same properties (i)  and (ii)  no

problem. The second thing is that   may be infinite but it is countable. Why? Because  

itself is countable. If it is finite then the proof is over by the previous lemma.

So, assume that   is infinite and form   just like in the previous lemma, enumerate  ,

 and so on, the only difference is now that this is infinite family.
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As before put  equal to the union of all  for . As in the previous example for each ,

the CW structure  patch up to define a CW-structure on structure  which is a sub-

complex of . So, this is all in the previous lemma, because these are all finite now, there

is union of finite in many of them. Now the claim s that  themselves patch up to define a

CW structure on . 

At each finite stage you have the CW structure.  is union of these finite CW-structures

one being the subcomplex of the next. 



Look at any  -cell or any  -face of it in  , it will be present at some finite stage. There

things  are  nice.  Attaching   cells  make  sense.  How  does  it  makes  sense?  Provided  its

boundary is  inside the  -skeleton. That is  all  we have to say. That is automatically

satisfied here. Also note that since interior of any two members of  are disjoint, it follows

that for  belonging to , we have  as in the previous case. Therefore, the  cells

of  are in one-one correspondence with member of , there is no subdivision of the 

-cells. In other words, the proof of previous lemma is valid here word by word provided that

 is finite for all . And that is ensured by local finiteness, that is all the difference. 
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We now come to an important  result  which I have stated as  a theorem but  it  is  also an

example. But this will be useful elsewhere. When studying manifolds we will be using this

one. This was our aim of doing all this fundamental work here. 

Take  to be any closed subset of an open set  inside ;  is some open subset of  and

 is a closed subset of . I want to tell you right in the beginning that  could be the whole

of . Another extreme case allowed is when  could be empty also. 

These two cases are importance also.  The conclusion may be trivially true for these two

extreme cases sometimes but they are of importance. You can take   to be just any open

subset of  and  to be any closed subset. So,  is a close subset of open subset  of . 



Let   be the collection of  all  those closed  -cells   belonging to   and such that   is

contained inside  and intersection of  with  must be empty. That is my .

The second set is   which is the collection of all  -cells sigma in   such that again   is

contained  inside  ,  (so  that  is  the  first  condition)  but  the  second  condition  is  that  

intersection  is a non-empty.

So, this that is the difference. The two sets   and   are quite different, if   is non-empty

then these are different. If  is the emptyset then the first condition is always true and hence

 will be empty. So, these two are quite different. Let  be the union of all members of

, and   be the union of all members of  . Both are  -dimensional CW complexes

which are countable, pure and locally finite. So, in the statement,  I am not including the case

when  may be empty and so on. Those things are obvious and you can just figure them out

yourself. 
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So the proof. Though there are two statements here one for  and one for , the proofs are

similar. So, I am going to put them together. Let us denote by  either  or  as above. As

observed before, first of all  which is the union of all members of , the same thing as

 is what? collection of maximal members of . In view of the lemma, all that we

need to do is to verify that  is locally finite. 

That was our previous case if it is locally finite, then we have the required structure. So, in



view of this lemma, all at we need to do is verify that  is locally finite. At all the points of

, this family should be locally finite. So, here is the proof. Take any point  

For  , let us have this notation a standard notation:   is the open ball of radius  

centered at  , all points   in   such that  . This is the notation. Now choose 

such that the ball   is contained in

(i) the open set , if we are working with , and ; 

(it means that x is not a point of  and is, of course, a point of . So  is in .) Since

 is  an  open  subset  of  ,  you  can  choose   sufficiently  small  so  that   is

contained inside . So that is no problem. Similarly, in the second case, 

(ii)  should be just inside . This is easier. 

In the first case, you have throw away  and then take that open set . Once you take

 inside  , this   is going to ensure local finiteness. We claim that only finitely

many members of  will intersect . The emphasis is on . If you ask this for members

of  that may not be true. Indeed, it is definitely not true, Not true at all. Only for , it is

true. Finitely many members of  will intersect  . That is the local finiteness for  at

every point. Let us prove this one. 
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Given any   clearly  there  are only finitely many members of   which intersect  a  given



bounded set. Take any bounded set inside . Any bounded set is inside some large cube.

Then only finitely many members of  will be there. When  is fixed. Given any fixed , this

true.

Hence in particular how many will intersect  which is a bounded set. Only finitely many

members. If you take , each  will contribute only finitely many. The problems comes

with members of   where  . That means these  -cells are smaller and smaller... they

can create problems. 

But this is  the point here.  You should see that none of them belong to   if   is chosen

appropriately.  is already chosen. If I choose  sufficiently large, after that no member of 

will intersect . I mean, some of them may intersect but they are not members of . So,

once I have said this, it should be obvious to you, but let me just make it clearer. 
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Choose the inter  such that this number  is less than . Recall that  is the side

length an -cube in . But why this ? The  is the diagonal of any -cube of side

length . So, that is why that is .  is there the diameter of any -cube in . It

should be less than . Let  be the collection of all members of  (now  has been chosen

correctly) which intersect . 

Then this  will be contained in the interior of  contains all the -cells which

intersect  .  Therefore   is  contained in   is  obvious.Since   is  an open

subset of , it follows that it is contained in the interior of . For example, if I take all



of them, it  will  be a  bigger cube of side length double of that one   around that point.

Similarly, if I take an edge also that will do same thing for this maybe may not be look like

that it may be brought up the but it will be some open set that open set will contain here union

of cells. So, this is elementary topology which is inside . 

Suppose now,   is in   where  , and   is non-empty. This   some  -cube in  

where . It may very tiny member depending on how big  is. Its intersection with 

is non-empty would mean that interior of  intersection with interior of  is non empty.  

That would mean interior of  intersects interior some  where  is in . That will imply that

 is contained in .  is an -cube of smaller size  is of size  and . So, it cannot be

that  is inside  but  must be inside . 

Next observe that since   intersection   condition (i) or (ii) for the choice of   imply

respectively that  is contained in  or . We want to show that  is never in . If both

 and  are inside ,  then clearly  is not inside . So, when both of them are in ? That is

what we have to examine.  Here, the cases  and  to be done separately. In case

, what does this imply? We get both  and  belong to  why? See what the definition

of definition of  here.
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Go back definition of :  is empty. Because  is inside , it follows that  intersection

 is also empty. So, both of them will be inside . That is one case in which  is not inside

.
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Now consider the case when  . Now it is something different.  It may happen that  

intersect   is empty, but we want members of   and then   intersection   must be non-

empty. But then  is also non-empty and both  and  are in  which means  is not in

.

So, that completes the proof that this both  and  have a nice CW structures of dimension

, which are countable pure and local finite. You can further assume (this I am not going to

use,  but  you  can  further  assume)  that  the  -cells  in  each  of  them  are  in  one-one

correspondence with members of  or members of  respectively. 
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I want to make one more remark. I want to draw your attention this:  is exactly equal to

. Take any point   in  , then there is a positive distance  , of that point to the

complement of  in . You can choose  large enough so that . Now there

will exist some   which contains  . It would follow that the entire   is contained in

. 

That means  gets a CW structure. If   is empty what we conclude is that every open

subset of   can be given a CW-structure,  every open subset. So that is  one conclusion.

Further, all these CW structures are so nice they are all made up of -cubes. Just star each

face  of  these   cubes.  That  will  become a simplicial complex. Therefore what we have

proved here that every open subset   can be given as simplical complex structure. So we

will use them in studying manifolds. 

Here are some easy exercises for you. Try them; keep trying them. If you do not get them we

are here to explain it to you. Our TAs will explain it to you. That is for today. Thank you.


