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Continuing with the study of topological aspects of topological manifolds, so today we shall

study paracompactness. Essentially, we are more interested in the partition of unity part of

paracompactness rather than all those topological conditions of locally finite open refinement

and  so  on.  So  we will  directly  verify  the  existence  of  partition of  unity.  Together  with

Hausdorffness, paracompactness is equivalent to the existence of partition of unity. This is a

general result. So we will not lose anything okay? 

You may have studied in calculus or in differential topology course, that every subset of 

is paracompact. The proof is much simpler here. There, perhaps you have to bother about

smoothness of the functions, in getting a smooth partition of unity. So the proof here is less

difficult, okay? Then the proof of the existence of smooth partition of unity for subsets of .

Indeed more or less, we repeat the steps that you have to go through in the case of a subset of

. So let us carry on. The first step is the following lemma.

Start with a topological manifold. The statement of this lemma is that there exists a nested

sequence of open subsets  in  such that each  closure is compact,   closure will be

contained inside ,  so on and  itself is the union of 's. 



The proof of this lemma would have been totally easy in the case of , because then

you can take  to be just the open ball with centre at the origin and radius equal to . But of

course, if  is any subset of , then you need to slightly modify these subsets . There are

many different ways of doing that. What we are doing here is select one method which easily

generalizes to any manifold. So I am going to do that proof here okay. 
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So what  we  are  using  here  is  the  II-countability  of  ,  okay?  It  follows  that  there  is  a

countable family of homeomorphisms  from open subsets  of  to , such that  is the

union  of  .  There  is  always  such  an  atlas  for  .  Out  of  which  I  can  take  a

countable cover because every II-countable space is Lindelof. So whenever you have an open

cover, it admits a countable sub cover, that is the Lindelof property okay. 

Now,  let  us  have  this  notation  more  generally.   is  the  set  of  all   such  that

, an open ball of radius   centered at . Okay? So put  , okay?

Each   is an open subset of  . The closure of   will be   of the closure of   the

closed ball okay. So that is compact so inverse image under the homeomorphism is compact.

Okay?  

So now start with ,  is compact okay? Inductively suppose we have defined  to

satisfy the property (i) and (ii) okay? Suppose you have constructed   with

those properties. We select  finitely many members of   that cover  , because   is

covered by all the 's and  is compact. Therefore there are finitely many of them which

cover . Let  be the union of these members and also . 



In other words, to begin with we have . At the second stage,  contains  and so

on at the -th stage with  contains . It follows that property (iii) is satisfied.

Obviously by the very definition, each  is open and its closure is contained in . The

closure of  being a finite union of compact sets, is compact. So all the properties (i), (ii)

and (iii) are satisfied. 
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Having done that, we will now attack partition of unity. So let  recall  the definition here.

Okay? Let  be any subspace of a manifold . So we are going to prove that every subspace

is paracompact which is a stronger result than saying that the manifold   is paracompact.

Okay? Let  be any subspace of a manifold  and  be an open covering for . Then

there exists a countable family  of continuous real valued functions on  with compact

supports,  (all  this  is  part  of  the  definition  of  a  partition  of  unity,  okay?)  such  that  the

following conditions hold: 

(i) all  are taking values between in the closed interval ? And they are all defined on the

whole of , the domain of each  is the whole of , okay?

(ii) For each , there exists a neighbourhood  of  such that only finitely many  's

are nonzero on . So this is called the locally finiteness of the family  at each point of

.  I  am not  claiming the  local  finiteness  of  the  family  on  the  entire  of  ;  that  is  very

important, note it down carefully okay?



(iii)  The third condition is  that  for  each  ,  support of   is  contained in  one of  the

members of the open cover, say, . This condition relates the family of fucntions with the

given covering. support of  is contained inside one of the .

(iv) The fourth condition is that the sum the total of 's at any given point  is . That is

why the name `partition of unity'.

The third condition has a name viz., the family  is subordinate to the cover . I am

just recalling this one here. I presume that you know paracompactness and also you know

partition of unity. At least in part I, we have done all this.
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Take  that will be an open set containing contain  okay? Instead of doing these

things on , I will do it on  itself, then condition all the conditions especially (ii), (iii) and

(iv) will get verified for points of  as well. Because functions are going to be defined on the

whole of  any way. So it is enough to prove the theorem for open subsets of . Okay? So

that is a simplification first. Therefore, we may assume that  itself is open in . 

By the previous lemma,  is the increasing union of a countable family of open subsets 

(  ranging over natural numbers) with the closure of each  being compact and contained in

. So I am using the lemma here okay, every open subset of a manifold is a manifold and

any manifold can be written like this is the previous lemma. So I can write  as an increasing

union of open subsets such that the closure of each of them is compact and contained inside

the next open set. 



Just for the sake of logical simplification,   for   and   Okay? We shall first

construct a family  double-indexed family, of open subsets of  homeomorphisms 

to the open unit ball   such that if we put  = the inverse image of open ball with

radius   and  centre  ,  (this  is  just  a  convenient  notation),  then  the  family  

themselves cover  and is a locally finite open refinement of the family . So this is what

we are going to do. We have not yet done it, okay? Refinement means what? It means that

each  is contained in some . Local finiteness means what? At each point , there

is a neighbourhood  which will intersect only finitely many members of . This will

be done by induction on . For , there is nothing to construct.  
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Inductively,  suppose   have been constructed for  .  Okay, For each point   in the

complement of  inside , (  is an open subset and  is a compact subset, so this

complement  is  a  closed  subset  of  a  compact  and  hence  compact),  you  can  choose  a

neighbourhood  contained in some member of   because   cover them and such that

 is not intersecting  . Okay?   contains  . So I have thrown away   itself

which contains   which is  a  closed set  In  a  Euclidean space,  you used the distance

function here, but you do not need all that. You just use the fact that you are working on a

compact set  and then inside the open set  intersected with the complement of

.  

We can further assume that there is the homeomorphism  from  to  okay? By taking a

smaller  open  subset  if  necessary.  You  can  also  assume  that   goes  to  .  Now



 the  family  of  inverse  image  of  half  open  disc  is  an  open  cover  for  the

compact set .

So I get finitely many  such that the members  cover this compact set. Label

them as  . Of course,   depends on   but we do not need to bring in

more elaborate notation. Notice that, we have not used any induction hypothesis here So, the

above step is valid simultaneously to all .
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It follows that  for  cover , for each , so therefore  form a countable open

cover for . We have selected these open subsets which are smaller than one of the members

of  and therefore, this family is a refinement of the original covering . 

Given , say  is in . Take  itself. That is an open neighbourhood of  which

does not meet any of the  if  . Remember ,   were chosen not to intersect

.  In  particular,   will  not  intersect  .  The  same will  be true for  all   for

 as well. So how many of 's will be there which may intersect ? You have to

take   only upto . For each  , there are only finitely many . So there are only finitely

many these balls which will intersect  , okay? So this proves the local finiteness of

the family . Alright? 

Finally, let   from  to  be this function (In the case of , you can actually get smooth

maps which are the called bump functions. Here I am not interested in smooth maps so I am



just taking this.) viz, twice the minimum of the distance between  and  and . So 

takes values always between   and   and is a continuous function okay? You could have

taken also such smooth functions but here continuous functions are enough. The important

property of  that we are interested in is that   takes the constant value  on the closed half

ball and as the point moves toward the boundary it decreases to   and is actually   on the

boundary. We do not need   to be smooth because anyway when we compose it with the

homeomorphism , there is no notion of smoothness. So do not worry about that.
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So put  where  is homeomorphism from  to  are chosen as before.

So first takes , it will come in to  and then compose it with . Extend  by  over

all of . This is possible because  are such that on the boundary, they are identically . So,

beyond that you can take their value to be the  vector to get continuous functions  from

.  Okay?  Now,  reindex  this  family  by  single  integers,  why  bother  about  double

indexing it. Right in the beginning itself, I could have done that because anyway for each 

fixed  , there are only finitely many 's, so it is just a countable family. Re-index it say by

. It is easily verified that this family satisfies properties (i), (ii) and (iii) for 's. First one

is that the values are between   and  that is what I have told you because they are got by

composing with  whose codomain is , okay? 

We verified that  is locally finite and outside  is . For the same reason, (ii) and

(iii) are also automatic. Okay. Now the fourth condition. We do not know anything about that

yet. Okay? So take   to be the sum total of all  , why this makes sense? Because it is a

locally finite family. In a neighbourhood of a point, only finitely many of these things will



survive and hence the total sum restricted to that open neighbourhood is finite sum finite sum

of continuous functions. So  is continuous on that open set. Since it is continuous at every

point of , it is continuous on the whole of .  

But also at each point there is at least one  such that  is positive. Since you are taking

sum of non negative functions, so value of the total sum is positive. Indeed, it is always

bigger than or equal to  , because each   of some half ball and   takes the value  

there. 

Now, take   okay? Dividing by it makes sense because this is nonzero continuous

function okay? So I can divide by  and verify that this the new family  satisfies the last

condition also, namely, now the sum of all  will be always equal to , because the numerator

and the denominator are the same. That completes the proof of the theorem.

So let us look at a few remarks following this theorem. If we begin with a smooth manifold 

, then  can be chosen to be smooth. How? First of all the  can be chosen to be smooth.

Then all these local homeomorphisms, the charts can be chosen to be smooth. So this gives

smooth of partition of unity for smooth manifolds. 
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Naturally,  there  are  many consequences  of  existence  of  countable  partition of  unity.  For

instance, you do not have to prove Urysohn’s lemma separately for manifolds Okay? So all

that I told you, you could have done independently, normality etc. II countability together

with local compactness give quite a few other topological properties. Those things you can do

just by using partition unity. For instance, Tietze’s extension theorem can proved by using

partition of unity okay? 

For example, here is some thing new. If  is some partition of unity on , then define 

from  to  by the formula . okay? Then  will be a proper mapping of

 into . Proper map means what? inverse image of compact sets are compact okay? So

this I will leave it to you as an exercise, easy exercise.
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So I have given a few more  exercises here, which are not all that difficult. 
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I will just start the next topic of interest now. Today, but we will not go very much deeper

into it. So that you will have some time to get familiar with this definition. Namely, start with

this definition of half space  inside . What is this? Set of all those points 

with the -th coordinate . So this is a subspace of . I call it the upper half-space. 

A topological space  will be called a manifold with boundary, if... (I am going to define the

entire phrase `manifold with boundary' a new nomenclature here, Now I am going to extend

the definition of local Euclideaness okay? To cover things like closed intervals closed disc

etc. Our original definition includes open intervals and open discs but a closed interval was

not a manifold. So I want to include them now. So this is the mechanism. The conditions of

II-countability  and  Hausdorffness  they  are  there.  However,  local  Euclideanness  changes.

How?)... that each point of  of  has an open neighbourhood  and a homeomorphism 

from  (now use  instead of  okay) onto an open subset of , Okay? Think of the half

closed interval , okay. That is the upper half space  in . What are its open subsets?

 is an open subset whereas  is not open. All open intervals contained in  are also

open. So the half space has more open sets than the full space okay? You have this swallow

this  one.  The  half  space  has  more  open  sets  than  the  full  space  upto  homeomorphism.

Therefore, this is an extension of the old definition of locally Euclideanness, namely you are

allowed to have an open subset which is completely in the open part of the half space it does

not touch the boundary of  in . (Boundary is what? Points with the last coordinate equal

to  okay?  



Because if you take  positive here okay that gives interior points of , they form an open

subset of , okay? Oo our old definition of Local Euclideanness is included also. So, more

manifolds will come now Okay? So let us start from here next time. Thank you.


