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So, today we will start the last topic of the course `topology of manifolds'. As I told you several

times, manifolds are the central objects of study in topology. The idea of manifold can be traced

back to Riemann. The formal definition as we use today is perhaps due to Hermann Weyl. Its

study is a must for any kind of higher Mathematics and Theoretical Physics. Our aim here quite

modest, dealing with only few salient topological features of the topological manifolds.

Actually as you keep putting more and more structures, like differentiable manifolds, and PL

manifolds, Lie groups and so on, the study becomes more and more interesting and more and

more concentrated also. We are not going to do all that. Normally, the topological manifolds are

quite difficult to handle because you do not have much structure on them. On the other hand

some of these things are neglected in the other studies and taken for granted. 



Suppose you are studying Lie groups you just assume whatever is happening to the underlying

topological manifolds quite often. I mean that is what happens with the books and teachers. So, I

thought of giving a good treatment for just topological manifolds here.
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Earlier  we studied simplicial  complexes  in  part  I  and  then CW complexes  in  the  very  first

chapter of this part.  They are in some sense, a slight generalization of manifolds and help us in

understanding manifolds better. So, we will bring them in study of topological manifolds also,

the CW-structures as well as simplicial structures okay. 

First  we shall  study purely  topological  and a  bit  homotopical  aspects  of  general  topological

manifold. We will  then take up a classification of one dimensional manifolds. Next we shall

discuss  triangulability  of  manifolds  in  general.  Finally,  we  will  end  up  these  talks  with

classification of compact surfaces. By surfaces, I mean -dimensional manifolds. Classification

will be done assuming that they are triangulable. But of course, because of lack of time we are

not able to present the proof of the triangulability of surfaces. So, this is just the gist of what is

going to come in another 15 modules or so, okay?

(Refer Slide Time: 03:46)



So, today we will just see the basic working definitions and examples. Fixed a positive integer .

Let  be a non empty topological space by an -dimensional chart for , we mean a pair 

consisting of an open subset  of  and a homeomorphism  from  onto an open subset of 

okay. By an atlas for , we mean a collection of charts  for , such that the domains

of these charts we will cover the whole of . So,  is a union of 's. 

If there is an atlas for , we say  is locally Euclidean. The `locally Euclidean' just means that

each point has a neighbourhood which just looks like, what it looks? It is homeomorphic to an

open subset  of  ,  okay? In fact  one can assume that  this  open set  is  the whole of  ,  no

problem. 

A chart  is called a chart at , if  okay? This is a special word I am just using.

You may not find it in the literature elsewhere. This is my own convention. By just saying that

psi is a chart  , I want to convey the meaning that   is in   and  . We can write

,  in  terms  of  its  -coordinate  functions,  because   takes  values  in  .

Often, we refer to this by saying that   are local coordinate functions for   at  . That is the

reason why I am putting this  going to , so that  corresponds to the origin in , and these

functions can be thought of as - coordinate, -coordinate respectively.
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Let   is  a  topological  space  with  an  -dimensional  chart.  We  call  such  a  space  `locally

Euclidean'. This means that there is a collection of charts, and each member of this collection is

an -dimensional chart where  is fixed. That is the first condition. We put two more topological

conditions, namely, that  must be a Hausdorff space and it must be II-countable. Recall that II-

countable means that the topology on  has a countable base okay? With these three conditions,

on ,  is called a topological manifold of dimension . 

So that finishes the definition of a topological manifold. In all this, we seem to have assumed

that . So, I would like to make the definition explicitly for the case . Any countable

discrete space is called a -dimensional topological manifold. Here, local Euclideanness follows

because when ,  is just a singleton space. Hausdorffness follows because every discrete

space is Hausdorff. 
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Finally, we would like to include the empty space also among manifolds. So far, we have assume

that  is  with non empty topological space. It is convenient to include the empty space also as a

topological manifold. However there will be always the problem of assigning a dimension  to

the empty space. What should be ?   What should we assign? It makes sense to have

 any of non negative integer. Since there is clash we cleverly choose to fix dimension of the

empty space to be .

It should be noted however, that at variously contexts in algebra and geometry, it is convenient to

assign . But you will see that the best way is to not assign any specific dimension to . That

is just like in the case of -polynomial, the degree can be taken to be any integer. Similarly, the

empty  manifold  can  be  given  any  dimension  depending  on  the  context,  you  can  choose  it

conveniently.  Anyway,  these  things  do not  matter  right  now for  us  but  when you do more

complicated mathematical theories, you will see the importance of this remark.
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Observe that given a chart   and a point  in , okay, we can choose a chart   at 

such that  equal to the whole of  okay? Because given any open subset of , and any

point whatever in it, you can choose a round disc okay? The set of all points which are at a

distance from the point strictly less than some suitable chosen positive  will be contained inside

the open set. And such an open disc is homeomorphic to the whole of . So, you can compose

it with the restriction of   and take that to be   okay. So, this is the advantage of topological

manifolds. It is true for  manifolds also but when you go to analytic manifolds, like complex

manifolds and so on, this is not possible. So, you have to be careful about this. By composing

with a translation, we can assume that  is  also. Okay these are not restrictions these are

always possible.
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For an atlas, it is necessary to assume that integer  is the same for all the charts. Of course, if

you assume  is connected, it easy consequence of topological invariance of domain. If ,

 are charts and  is non empty, then  will be homeomorphic to an open subset

of both  and . Therefore . That proves that dimension is a locally

constant  function on a locally  Euclidean  space.  Hence,  if   is  connected  then  it  must  be a

constant.
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In any case, since we do not allow disjoint union of two manifolds of different dimensions, as

manifold, why bother about all this, just fix the integer  right in the beginning as we have done.



For  a  topological  space  that  is  locally  Euclidean  we  have  put  two  more  conditions,

Hausdorffness and II-countability, to be a manifold. The II-countability condition is equivalent to

many other conditions such as metrizability or (paracompactness plus connectedness of course),

okay? So, depending upon a particular author's fancy, you may find different definitions. But II-

countability  is  most  popular  and  easier  to  handle.  The  point  is  that  under  slightly  suitable

conditions like Hausdorff and so on, they are all equivalent. So do not bother if someone has

taken a different condition than II-countability in the definition.  

However, if you ignore Hausdorffness, there will be chaos. There are people who study locally

Euclidean spaces which are not Hausdorff, okay? That is one thing we are NOT going to do here

okay?

So, we find second countability most suitable for you our purpose. The Uryson's meterzation

theorem which is a standard result in point-set-topology tells you that every second countable,

locally compact Hausdorff space is metrizable, you can embed it inside the Hilbert cube, okay

and then take the induced metric. Also a metric space is always paracompact okay? Since this is

not a standard result here we shall directly prove that a manifold is paracompact.

If you have studied it in your topology course or not then there is no problem okay. So, here you

will  see  that  anyway.  just  assume  ,  namely,  locally  Euclidean,  II-countable  and

Hausdorffness will show that it is paracompact. Indeed,  a more suitable conclusion that we are

interested in is that a manifold admits partition of infinity. So, this proof will be much simpler

than the proof of partition of infinity for CW-complexes okay? So that is one of the aims here.

That we will do next time.
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Clearly, the differentiable manifolds inside Euclidean spaces okay, that you may have studied in

your calculus courses while studying Stokes theorem and so on, they are topological manifolds

in the sense that each point has a neighborhood which is diffeomorphic to some open subset of

.  So  ,since  diffeomorphisms  are  homomorphisms,  automatically  our  conditions  of  a

topological manifold are satisfied okay. The boundary of the unit square , as a subspace of

 is a topological -dimensional manifold. It is a simple example okay.  itself for all , is -

dimensional manifold. Any non empty open subset of  is -dimensional manifold. These are

easy examples. 

Inside , only open subsets, all of them are -dimensional manifolds. Other than those, if you get

out, say, in , the circle is a nice (smooth) manifold, (differentiable manifold of dimension ,

okay? But here  okay has corners. Yet it is a topological manifold of dimension . You may

have learned that this is NOT a smooth manifold inside , because there are corners. So, I just

wanted  to  give  this  example  just  to  contrast  between  topological  manifolds  and  smooth

manifolds.

Take the union two axes,  -axis and  -axis in  , okay? This is not a manifold. If it were a

manifold it would have been a -dimensional manifold right? Because you take any point in it

other than , it has neighborhood which is homeomorphic to an open interval right? At ,

there is a problem, everywhere else there is no problem. If you take a neighborhood  of this



origin, okay, no matter how small it is the complement of the origin, i.e., if you remove the 

from , then there will be at least four connected components. When you remove a point from

an  interval,  you  will  get  at  most  two  components.  Therefore,  there  cannot  be  any

homeomorphism of  to an open interval okay? So, this argument gives you many examples of

graphs with such forks which are not manifolds right?

So, among conic sections, intersecting pair of straight lines is not a manifold. All other conics in

 are -dimensional manifolds, connected or not.
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So, here is an example of a locally Euclidean space which is II-countable also but not Hausdorff.

It is very easy to construct such things, namely, all that you have to do is to take two lines, okay,

and identify all the points from one line to the other line except the origin, origin here and origin

there standout separately. So the quotient space so obtained is called a line with a double origin.

What happens here. Say in the two line denote the two origins by  and  say.

And neighborhood of   will be an open interval that open interval will intersect every open

interval containing the  in the quotient space. So, the quotient space cannot be Hausdorff okay?

Other  two  conditions  are  satisfied  here  okay.  So,  you  can  do  many  such  simple  examples

wherein Hausdorffness does not follow from the local Euclideanness and/or II countability.

(Refer Slide Time: 21:08)



Similarly  you  can  construct  lines  with  triple  origins  also,  and  so  on.  But  the  purpose  of

introducing such examples is just to illustrate the fact that of Hausdorffness is not a consequence

of the local Euclideanness. We are not interested in this kind of spaces okay? We do not call

them manifolds.
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Similarly, there is something called the `long line'. It has all the features of the real line but it is

`too long' to be II-countable. To understand this one what you need is to understand the ordinal

topology, ordinal numbers. Ordinals are first of all well ordered sets okay? And then you take 

to be the set of all the countable ordinals which itself is an uncountable set with a total order.

Now  take  its  product  with  the  closed  interval   and  take  the  lexicographic  order,  viz.,



 iff   is less than or equal to   and if   then  . Check that this makes

 into a totally ordered set. Take the corresponding order topology on it. If  is the least

element of , then throw away the point  from . The resulting space  is called the

long line. It  is not hard to check that this   is locally Euclidean of dimension  . All ordered

topologies are anyway Hausdorff. 

However,  is not II-countable okay? We have no time to recall ordinal topology and so on. So,

you have to assume that. If you want to read more about it, well there are a lot of sources. One

source  is  KD Joshi's  book set  topology  okay?  Another  is  my  NPTEL  course  on  Point  Set

Topology  Part-II.  This  space  is  path  connected  -dimensional  locally  Euclidean  but  not  a

manifold. Something strange is happening here, okay
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Another  type of  non example  is  obtained  by taking disjoint  union of  manifolds of  different

dimensions. Take a circle and take its union with a discrete point. We can do that kind of things

in a CW complex but this will not be a manifold. Or take a circle and take its union with disjoint

-sphere, etc.
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So, we have quite a few elementary kind of examples and non examples. But now let us come to

more serious and more useful and central  examples and the first one is of course the sphere,

okay, parabola, hyperbolas, conic sections except a pair of intersecting st. lines, spheres of all

dimensions,  product of finitely many of these, open subsets of any of them etc,  all these things

are standard right?  

One important non trivial example is the projective space, which does not come as a subspace of

. It  does not occur like that but later on we can find models for  , that is different

matter. But as a definition it is not taken as a subspace of , because it is occurring as a quotient

space right? The -dimensional real projective space  (or you can take the complex projected

space   also exactly similarly), is the quotient space of the unit sphere   by the antipodal

action of , okay? Every point  in  is identified with . Or you can take  setminus

the origin and then take quotient by the action of  set minus 0) via scalar multiplication. That

gives you another picture of the projective space viz, the space of all lines inside  passing to

the origin okay? We done all this in more details earlier.

So, given x belong to , consider  to be the set of all points in  which are at a distance less

than  from . Look at the open ball of radius   around that point and intersect it with the

sphere okay. If you restrict the quotient map to  that will be a homeomorphism. There is no

identifications there okay? And this open subset  is definitely homeomorphic to an open subset



in . That will tell you that the projective space is locally Euclidean of dimension . okay? The

only thing that you have to verify is that it is Hausdorff.

The point is that this being a quotient of a sphere is compact space and every compact space is

II-countable automatically okay? 
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So, why this is Hausdorff? That also follows easily. Take any two points . Depending

upon the distance  between them,  okay?  You can choose   such  that  an   neighborhood

around each of four points  are disjoint. Now when you go to the quotient space ,

you will see that you get image of these open subsets will form disjoint neighbourhoods of  

and . 
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Now I want to give you some more theoretical  examples namely when you take a  covering

projection, okay? I would like to have a picture like this. If   is a manifold and   to   is a

covering projection, then  will be also manifold. Or the other way round, viz., if  is manifold,

we may anticipate that   is also a manifold? It happens to be true, okay? But we have to be

careful here.

So, let consider only connected spaces, and not bother about too many connected components.

Take  a  connected  space   and  take  a  connected  covering  space  .  Since  every  covering

projection   is a local homeomorphism, it follows that   is locally Euclidean iff   is locally

Euclidean (of the same dimension). Moreover, we have seen in part I that  is Hausdorff iff 

is. We leave this to you as a not so difficult exercise.

So, the only problem is about II-contability. If  is II-countable being a quotient of ,  will be

also II-countable. It  is  not  difficult.  But the converse  is  not  clear.  Why II-countability of  

implies that of  . So, earlier I have said that the II-countability is easy to handle but now we

have  a  problem  here.  On  the  other  hand,  if  try  use  other  equivalent  conditions,  such  a

metrizability or paracompactness etc. you will have more problems okay. So, problem is there,

how to prove that a connected covering space of a topological manifold is II-countable. In fact it

will not be true if this covering has uncountable sheets. Why? Because an uncountable sheeted

covering means that the inverse image of a point under  is an uncountable discrete subset. And



if you have an uncountable discrete subset of a topological space, then the space cannot be II-

countable. So, the only hope is that any connected covering of a manifold has at most countably

many sheets, finite case is okay. 

Then fixing a countable base  of evenly covered open sets for , we can take the collection

of all open sets   in  such that  restricted to  is a homeomorphism onto some . And

check that this collection forms a countable base for  . But then we know that the number of

points in the fiber i.e., the number of sheets of a connected covering is closely related to the

cardinality of the fundamental group of the base space , viz, it can be identified as a quotient

set of . Indeed, if the cardinality of the fundamental group of  is uncountable, then you

can take the simply connected covering of , that will not be II-countable okay? Luckily we can

prove that the fundamental group of a topological manifold is countable. So that will be one of

the central results here okay? So, once we prove that, it will follow that a connected covering

spaces of a topological manifold is a manifold okay.
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So, this is one of the fundamental problems. There are other kinds of problems with covering

spaces which have easy affirmative answers. Like, if you have a differentiable , Or analytic,

etc., manifold then automatically  will be differentiable (respectively,  or analytic). If it is

Lie group the covering will be Lie group. II-countability of the covering is not all that obvious.



Likewise, paracomapctness of a manifold is an important result. That is the first thing that we

want to prove is this. We will do it next time. Thank you.


