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We continuing with the proofs of various statements that we have postponed. Let us take them

one by one.  This  is  one of  the important  results,  namely,  the excision theorem for  singular

homology. So, this is central to our theme. So, what is excision? If  is a union of two subspaces

 and  such that interior of  and interior of  cover the whole space, then  is an

excisive couple for the singular homology. 

In particular, if  and  are open, then this condition will be automatically satisfied. That is

obvious.  Often,  what you may get  is  not  exactly  open subsets but  their interiors  themselves

covering the space. That is good enough and is is a very, very useful statement. 

(Refer Slide Time: 01:37)



So, what is the meaning of saying that a pair is excisive? The inclusion map of the subchain

complex  into  induces an isomorphism of the homology modules. That is

what we want to show. 

Given any singular  -simplex one of the generators,  say   from   to  . Remember   is

written as the interior of  union interior of . Take the inverse image of these open subsets,

under . They will give you two open subsets in  which will cover .  is a compact

space. Whenever you have an open cover of a compact metric space, you have your Lebesgue

number and once you have Lebesgue number you can cut down this  and iterated  barycentric

subdivisions as often as you want. So, that the mesh of final complex will be as small as you

want, viz., smaller than any pre-chosen positive number. So, I am just recalling the proofs of

various statements here in short. What you get is an iterated subdivision  such that the

open star of each vertex will be contained in one of the two open sets. That is the meaning of

saying that  is finer than this cover. Now, remember that we have already introduced this

subdivision chain map  composed with itself  times is also chain map  on  induces the

identity isomorphism in the homology. same identity isomorphism.

It follows that that the singular -chain  belongs to the subgroup , it is

the sum of singular  simplexes each piece is  contained either in   or in  .  The



original  you know may be partly in  and partly in . Now, if  is a singular -chain, being

a finite  , we get integers   for each   as above, take   equal to the maximum for all

these 's. Then  will have the same property. The same will be true of the boundary of 

as well. 
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Therefore,  given  a  -cycle   in  ,  there  is  an  integer   such  that  such   is  in

.  This  much  we  have  seen.  Now  pass  on  to  the  homology.  If   from

 to  is the inclusion map, it follows that  . This proves

the surjectivity. All this was similar to the subdivision of singular -simplexes which are nothing

but paths. 

Write a composite of two of its paths, the sum as a chain is homologous to the original -simplex.

This is what we have seen long, long back. So, that theme is used here in a much stronger sense.

So, these are all technical details here, that is all. 

(Refer Slide Time: 10:14)



Now  to  prove  the  injectivity  of  ,  which  is  similar:  Suppose   is  any  -cycle  in  the

 itself and   is a  -chain in   such that the boundary of   is  .

What do I mean by this one? This just means  in . 

Apply the above argument to  to get an integer  such that  is in  But

then . This just means that  in  This

proves the injectivity.

Thus,  we  have  to  developed  these  terminologies  and  technicalities  centred  around  concepts

which are is very simple. So, this completes the proofs of some of the big theorems. Generally,

people are either afraid of going into the technicalities or they say it is very simple and brush it

of. So, the next thing that we consider is not all that simple, little more technical details are there.
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The next thing is: take a simplicial complex   and sub complex  . Take the relative singular

chain complex  . Take the relative singular simplicial chain complex, that is a sub

complex, inclusion map double  into  is a chain homotopy equivalence. That

is the statement of theorem 4.1. 

We are supposed to prove this. We shall not prove this statement directly, but slightly weaker

looking statement which will be the more useful for us and the more central to us. Namely that

induced the map on the homology is an isomorphism. We shall be satisfied with the proof of this

statement for the time being. 

The  proof  will  come in  two steps,  namely,  first,  instead of  pairs  ,  we will  prove  the

statement for the absolute case. Once you have done that, you can use the long homology exact

sequences associated to the chain complex double of  and  to obtain a ladder

of  these  long  exact  homology  sequences  with  two  consecutive  arrows  being  isomorphisms

missing the third one and so. From the five lemma the all the third arrow will be isomorphisms.

These middle ones are precisely the inclusion induced morphisms of the theorem.
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After  that,  the original statement 4.1 about homology equivalence comes by another  general

statement in homological algebra that on arbitrary chain map of free chain complexes induces

isomorphism in homology iff it is a chain equivalence.  That statement is purely homological

algebra; it  is not at all  difficult  but time consuming. Therefore, I am skipping it  here. So, in

principle, I am only going to prove 4.1 partially.  
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So, another simplification: you want to prove homology isomorphism. You can do that by first

proving it only for the finite . Then usually you can take a direct limit argument and arrive at



the proof for the general case. Indeed, you do not need a direct limit as strong as you want if you

do not understand it. It is very simple, just like what we did for barycentre and so on. 

Suppose you want to prove the surjectivity. Take a cycle here representing an element in the

homology. Every chain in  is supported on a finite simplicial subcomplex . So, instead of

 you use that subcomplex , then from . You have already proved surjective there.

Because everything is induced by inclusion maps here, surjectiveity of the original map follows.

Similarly, you can prove the injectivity also in the general case. This is essentially what happens

in the  direct  limit  argument,  which is  much more  general.  Homology commutes  with direct

limits. That gives a proof directly.
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Now, so how do we prove it for a finite simplicial complexes. Here we use induction, on the total

number of simplexes inside . If the number is one, what is ?  has to be a singleton vertex.

That is all. For a singleton vertex, both double  and  are the same. Every map from   to a

single vertex is simplicial being a constant.

Now you assume that it is true for all simplicial complexes with total number of simplexes in 

less than  , where   is some positive number.  Let   be a finite simplicial complex with the



number of  simplexes equal  to  .  In  any finite compelx,  there  is  always a  maximal  simplex,

maximal means what? It is not contained in another  larger simplex. So, let   be a maximum

simplex in . Now delete that maximal simplex only, suppose .

Deleting  means that the rest of them you have to keep, namely, all the smaller faces of  as well

as those which are disjoint from  . So, only one simplex you will be deleting to obtain a sub

complex  of  consisting of all simplexes in  other than  itself. 

By induction hypothesis what happens now? The inclusion map  from   to

 is an isomorphism, because  has a smaller number of simplices. Not only that, the same

inclusion map if you restrict it to the  of the boundary of  which is a subcomplex of , that

restriction also induces isomorphism in homology. Here  denotes the boundary subcomplex of

the simplex . 

Since  is a simplex, both homologies,  and the singular homology vanishes in

positive  dimensions,  we  have  directly  proved  it  in  example  4.1  and  this  inclusion  induced

morphism in   is  the  isomorphism of  infinite  cyclic  groups.  Since  any  pair   of

subcomplexes of a simplicial complex   is excessive, both for singular simplicial

chain complex and singular chain complex of the underlying topological spaces, we can apply

Mayer Vietoris sequences for both of them.   
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So, take   and   and use a temporary short notation   for  the homology of of

double , (this is not a twiddle, this hat is just a notation, temporary notation because it is too

large and will go out of the slide). 

So, this is the first  row here for a  simplicial singular  chain complex. The second row is for

singular chain complex. The first term is for the intersection, this one is the direct sum and the

third  term  is  for  the  union  ,  followed  by  the  connecting  homomorphism  back  to  the

intersection. The vertical arrows are all inclusion induced. The entire ladder is commutative. By

induction hypothesis, the first, second, fourth and the fifth vertical arrows are isomorphisms. By

the five lemma, the third arrow is also an isomorphism. With that we can say that the proof of

theorem 4.1 is complete.

(Refer Slide Time: 25:51)



So,  we  have  one  more  thing  to  do  here:  Equivalence  of  singular  simplicial  and  simplicial

homology, double  and  This time we do not have an inclusion map but we have a quotient

map,  from double  to  We shall present a proof of 4.2. Just for the proof of that we fix a

total order on the vertices of . 

Then  for  each  ,  each  -simplex  ,  we  can  display  it  by  writing   where

 is an increasing sequence, with respect to the total order that we have fixed on the

vertices of  .  So, that would define a unique element of a  double  .  This assignment

extends  linearly  and  defines  a  splitting   from   to  double  ,  of  the  quotient

morphism  from double  to . Splitting means what? You come back by quotient

map, its identity.  If you put all these 's together, that is the totality of these, that is a chain

map  from  to double , follows because the face operators preserve the order. So,

we have a splitting of , which is a chain map, so that is the first thing to observe. 
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Now, it  remains to define a chain homotopy on the opposite side.  We already have   is

identity of   However,   is not identity in general.  But I will now show that it is chain

homotopic to identity of double  It will then follow that  is an isomorphism in the homology,

so, the proof will be over. So, how to define a chain homotopy from  to identity of double

of  

We observe that both  and  preserve sub complexes of . (Note that  is functorial and hence

in particular it will preserve subcomplexes. However,  is far from being a functor. It depends on

the  total  order  we  have  chosen.)  In  other  words,  if  we  have  a  subcomplex   of  ,  then

 will go inside  Similarly,  will go inside double . To that

extent,  is canonical and this property is easy to verify.

The chain homotopy that we are  going to construct  will  also have this property,  that it  will

preserve the sub complexes.  Hence, we can easily pass onto relative chain complexes.  So, a

relative version will also come automatically. That is what I wanted to emphasize here. 

Now what is a chain homotopy ? It is a collection   of morphisms   from double   to

double   such  that  boundary  composite   +   composite  boundary  is  the  difference



. This is the way   has to be defined. As usual in many other cases we have

seen, we will do this by induction on . 
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The first thing is to note that  from  to double  is the identity map. What is double

, free group generated on simplicial maps from  to . For each vertex, there is only a

unique map taking  to the vertex. That is all. Therefore the quotient map  itself is the identity

map.  Therefore,  there  is  no  problem  at  this  level.  We  can  start  with   for  all  -

simplexes. 

Now suppose we have defined  for  so as to satisfy (42) and in addition such that support

of  is contained in the support of  for each singular simplicial simplex . Then we would

like to define  also to have the same property in the next stage. Why I am saying that? I want

to construct it this way, that is a part of the induction hypothesis, which is automatically satisfied

at the -level. This additional condition will help me to prove the next step. So, I will assume that

I have constructed it  in this  way,  namely,  for  all  the singular  -simplexes  ,  we have

support of   is contained in the support of . 

Remember we need to define  only the generators here, and we take extend it linearly over the

whole group. Both sides here are linear, therefore, if you verify this identity over generators then



it  will  be verified  for  all  of  them. So,  we are  talking only about  what  is  happening  on the

generators.

So, let  be any singular, simplicial simplex in  and  equal to support of . We need to find an

-chain   supported  on  the  same   and  so  that   is  given  by  (42),  viz.,

 Note that  is a -chain and hence  of that is already defined.

And we want to define  so that its boundary is this one. So, this is possible only if this entire

thing is first of all is a cycle, i.e., its own image under  must be .
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Look  at  the  boundary  of  .  It  is  equal  to

. Now, why is this ? This is by induction hypothesis, equation

number (42) (subtract one more term  which is anyway zero.) It is also clear that the

support of this cycle is contained inside . We are not going out of the image of the simplex 

which is .

Since the reduced homology of double  of any single simplex vanishes in all dimensions, every

cycle is a boundary. So, finally this is where we are using some topology. Till then all the time

we are using just some algebra in some sense. So, here we are using a result done in an example,

viz., the homology of double of   of a simplex is   in positive dimensions. The argument is



applicable in dimension one as well, by taking reduced homology. Hence there is a chain 

belonging to double of , with its boundary equal to the RHS.

So, that completes the construction of   and completes the proof that  the singular simplicial

chain complex is  equivalent  to the simplicial  chain complex itself.  There is  a pattern in the

methods employed in these proofs. That pattern is generalized to what is called as `method of

acyclic models',  in abstract  homological algbra.  Something is free,  something is acyclic,  and

these two things will be put together. My idea is to explain the rudiment of this method at the

very simplest cases, how these things work, so that when you are trying to learn more algebraic

topology of this sort, you will be better off even without the books or the teachers help. Often it

is the case that they will have not time or patience to explain. That is why I have explained all

these things separately and instead of using the high missionary right in the beginning. So, this

completes one aspect of whatever you wanted to study namely, the homology. 

Whatever we have aimed up till here that we have completed. We have completed all the results

long back.  Now whatever  proofs  that  we had postponed,  most  of  them we have  completed,

except a few things such as some homological algebra I told you just now. So, next time I will

take a different topic, namely, topology of manifolds. Thank you.


