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Finally, we come to the section in which we would like to complete the proofs of various

statements that we have made in this chapter and have postponed their proofs. So, let us take

them one by one. 

The very first thing is about homotopy invariance. It would remind you of Poincare' lemma in

differential topology if you studied it. Indeed, people got the idea from there and now we

have completely generalization.
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So, let us first concentrate on singular homology. The homotopy axiom will be proved by

proving the lemma 3.7, in which we promised that we will construct the prism operator. This

prism operator is going to be the homotopy between  and .  is going to be a map

from   to   and   are  various  coordinate  inclusion  maps  from   into

, and  are the morphisms induced at the chain level. 

And the homotpy   we promised, that will be functorial.  In a way, by demanding that it

should be functorial actually helps us in construction of  itself. So, what is the functoriality?

Suppose you have a continuous function  of the pairs from  to , any continuous

function.  Then we have the homotopies   from   to   as  well  from

 to . 

They should be compatible under is  , viz,  , where   denotes the

identity map on the factor I. This diagram must be commutative. So, this is what we demand,

even though it would not have been necessary for us just to prove the homotopy invariance

theorem. 
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But then for any singular  -simplex can be thought of as a map from  to  . So, putting

sigma in place of  here, and then what we get is that ,

where  denotes the identity -simplex in . 

Therefore, this gives us the idea that it is enough to define this  not for arbitrary  but for

just  Once you have defined it for , then for an arbitrary ,  must be given by this

formula, by functoriality.

Therefore, our task of defining  on , first of all is reduced to defining it on all singular

-simplexes, because then by linearity, it is enough to define it on the generators. What are

the generator?  Generators  are arbitrary  continuous maps from   to  .  Even that  is  not

necessary. Just define it on  for each .

Then we are done. Then I take this as a formula for 's and extended linearly over all of

 Of course, we have to verify that it is a chain homotopy. So, what is the property that

will make it a chain homotopy. So, that also I have to decide for  only. Because, first of

all we have to have . 
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So, this is the meaning of saying that  is a chain homotopy between  and . If this is

true for all singular simplexes then it will true for all chain as well since both sides are linear.

Once again by functoriality, this will follow if we have the same condition for all  in place

of .

Because we can apply simply  to both sides of (38) to get (37). So, our task is to

define  so that it satisfies (38). Now, I have to recall the prism construction, which is a

subdivision  of  ,  in  order  to  define  the  prism  operator.  This  was  elaborately

introduced in part one, but I should to do it here the way I want it, right now here. So, in

,  let   denote  .  Remember  that   are  the  vertices  of  .  In

,  are at the at -th level.

And let , the same thing at -level. So, similarly, you can take the barycentre of 

and place it at the level -level, a notation for that being .
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So, this figure is just for  is this one. This will be your  and this will be  and

this will be . Here , this is , these are is  and , and these are  and . These

can be labelled by  and , which are respectively,  and 

. Similarly, for   and   and so on. You have to do this inductively. First define in each

vertex , introduce the extra vertex  in .

The construction for the -skeleton of  is over. Now for each edge  introduce the

additional vertex , Look at the boundary of , which already has been given a

simplicial structure. Use the come construction to extend it to a simplicial structure on ,

with   as the apex of the cone. That complete the construction for  -skeleton of

.  Proceed  exactly,  this  way  to  complete  the  prism  construction  on  the  entire  of

. So, this simplicial  structure is somewhat different  than the simpler one viz, the

barycentric subdivision. Note that the top and the bottom faces do not get subdivided here. 
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Next,  recall,  for any simplicial  complex  , if   from   to   is  a  simplicial  map with

, we had introduced the notation .  If  belongs to , where  is

a simplex in  and such that  contains , then  denotes the linear

singular  -simplex given by  , the first vertex is   and the

remaining vertices are got by shifting . The affine linear extension makes sense within the

convex set  subset of .

Clearly, support of   is contained inside  . Similarly, if   is a singular  -chain

such that support of rho is contained in  for some , then for any , it makes sense to

talk about  as an -chain. 
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So, now the definition of  is completed by induction again. The first thing is  is taken to

be  , the extension of   by  . Thus,   is  -chain in  , i.e.,

. So the two  -simplexes of the prism are directed toward the barycenter.

Check that it satisfies (38) on . That completes the definition of  on  for all spaces

.  , since the term   cancels out. And   is precisely

equal to . Now inductively assume that you have defined  on  for

 so as to satisfy (37).

Then  is defined on  by only defining , which we know is equivalent to defining 

for   only  so  as  to  satisfy  (38).  What  is  then  ?  So,  take   to  be

, the extension by   of the  -chain   shifted to

the top  shifted at the bottom minus an error term, so that it is equal its boundary is equal

to  operating on . That is as dictated by the condition (38) as you will notice

soon. That is why you are taking the error term  of boundary of . Boundary of  is an

-chain,   of that is an  -chain, so, I can subtract that one. That is a troublemaking

term, you delete that one. 
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Any way, let us verify (38) now. By induction again, (38) holds for  and hence first of

all,  , last term drops out and hence,  this is

equal  to  boundary  of   which  is  equal  to  boundary  of

. 
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Therefore, boundary of  is (the boundary of  of some chain in the bracket, so, first you

delete  and write the chain bracket term and then  of the boundary of the chain in the

bracket)  equal  to

 

From the previous paragraph, whatever is in the bracket is just  . So, you get only the first

line. The first term is  and the second one is  and the third one is   of

boundary of . You take this last term on the left-hand side then what you get is this formula

(38), that we wanted. So, the construction of this prism operator is over. Remember once this

is done the homotopy axiom is completely proved.
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So, let us go to the excision now. Here we shall present the proof of the excision Theorem.

Recall  that  we have  defined  a  subdivision  chain  map   from   to  ,  

denoting the barycentric subdivision of , where  is a simplicial complex. This idea will be

now completely  generalized  here.  This  was  used  to  prove  the  simiplicial  approximation

theorem. But the idea is very good so, we are going to extend it to the entire singular chain

complex now. 
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So, the subdivision chain map of the singular chain complex itself and a chain homotopy 

from  to , of the chain map  with the identity map, simultaneously, these two

things will be defined.
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So, again this will be done inductively. First of all, if  is a -chain, then  is taken as 

itself.  That  means  each  point  is  taken to  itself;  this  was the  case  with   on simplicial

complex also. The   is identity on the original vertices and the extra vertices were some

other vertices, but now we do not have to bother about them. So, it is in some way simpler

here. Take . 

So, inductive construction starts at -level. Having defined  from  to  and  from

 to  , we shall now define them on  -chains. First let   be the identity singular  -

simplex in , just like we did for the prism operator. On , let us first define  (now

you see, this is a game that we repeat again, the kind of thing that we did in prism operator,

though here we are doing similar thing with in  ) to be the cone construction of  

with  apex  ,  i.e.,  the  -chain   And  take   to  be

See we are first taking  which defined by induction as a -chain and

then taking the cone over the entire thing. 
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So, let us let us go ahead now. For any -simplex  in ,  will be  of .  is the

chain map from  to , induced at the chain level. So,  makes sense in

. So, this idea is similar to what we did in homotopy theory, using functoriality. After

defining the value of the function on , for arbitrary ,  out that is taken as the definition of

the function on . Similarly, take . 

So, then extend both of them linearly over all the chains.  is the ;  

(summation) is the summation of 's. 
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Notice that once we define these maps on the universal singular simplexes namely , then

the rest of the definition is forced on us by the functoriality and linearity. So, that helps us to



define  the  whole  thing,  just  like  in  the  proof  of  homotopy invariance.  This  is  a  typical

example of what one generally does in such situations and worth noting now. 

So, once again I keep telling you that if you have to do some existence theorems, construction

and so on you better  understand  how far  it  is  free,  and  how much is  forced  on us.  For

example, in the existence of solutions of differential equation, there is a uniqueness part. The

uniqueness part actually tells you what could be the map what could be the solution. Here is a

case wherein because it has to be like this, because functoriality, that restriction helps us to

cut down our work, and define it for only for .

Now to see that   is a chain map. Chain map means what?   should commute with  .

 must be . This is what we have to prove. Again, we can do it by induction.

By linearity, we need to verify it for singular simplexes  only instead of chains.  

If , there is nothing to prove. Assume that it is valid for , we should prove

it for a  -simplex  . We note that instead of arbitrary   here, it is enough to prove it for

, again by functoriality. 

(Refer Slide Time: 28:36)

But then we have . By induction hypothesis,

the second term is equal to   and hence is zero. Similarly, now I have to

show finally that  is a chain homotopy, . So, again you do



this by induction. The induction start at level . Here it follows because  has been chosen

to be . So, suppose we have proved the statement for -chains, .
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As a consequence, we have boundary of  is equal to  (you ca

just add the zero term ), and this is equal to , by induction. So, it follows

that  ,  by  taking  all  the  terms  to  one  side.  This  was  an

elementary computation.
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Therefore, now, , keep the term as it is) plus second term is

the boundary  , in which you write the full definition of  .  So the boundary of

 is a summation in which the first term is obtained by dropping  and just writing

the term in the bracket, and then subtracting   of   of the bracketed term. Using the



result in the paragraph above, it follows that this is equal to  is left out. So, we

have proved the chain homotopy property also. So, let now summerize the properties of ,

so that we can quote it in future use. 
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The subdivision chain map  from  to  and the chain homotopy  from  

to  have the following properties: What are properties? 

(a) First of all, for any simplicial complex ,   of the singular simplicial chain subcomplex

double  goes inside double  and  of the singular simplicial chain subcomplex

double   goes  inside  double   and  hence  define  a  chain  map  and  a  chain

homotopy on the chain complex double  into double .
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(b) The chain map defined in (a) further induces a chain map on the quotient complexes,

 to . Verification of the above two statements is easy. 

So, this generalizes the old construction  of  is contained this . So, our new

chain complex, our new  the subdivision chain map has the property that it preserves the

simplicial maps. Simplicial singular subcomplex are preserved. This is what defines a chain

map and a chain homotopy at the subcomplex levels also.
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The next theorem states that:  If   from   to   is  a  simplicial  approximation to the

identity map, then on the chain complex level, we have . We proved this

one earlier working quite hard. Now this follows easily. Let us stop here and next time we



should prove the excision, basically excision and a few other things which are left out. Thank

you.


