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So, now we shall  start an entirely new topic which is  again the starting point of a big topic

namely relation between homotopy groups and homology groups. So, we shall only deal here

with relation between the fundamental group and . To begin with we can and will assume that

 is  path  connected  because,  if  it  is  not  path connected,  it  will  be  the study of  each  path

connected components separately. 

So,  you can pick up a base  point  because  we are discussing   the fundamental  group. So,

fundamental group always should be discussed with a base point  in the space , though we do

not always mention it explicitly.   



Now, take an element in , namely, represented by loop in  at the point . A loop is, first

of all a continuous function from a closed interval to . The closed interval can be thought of as

the underlying space of the standard -simplex . Therefore, a closed loop can be thought of as

a one cycle.  It  is  a singular  -simplex in  ,  but  since both the endpoints  are  the same, the

boundary of that  -simplex will be  . Therefore, it is a  -cycle. So, if we have a loop , I will

denote the  to be the element represented by this  in . The  will denote the element

represented by  in . 

So, starting with an element in  namely  to , I get a function from  to .  I

want to claim, first of all that this is well defined. In other words, if  and  are path homotopic

loops, i.e., they represent the same element in  then as -cycles, they should represent the same

element in , that is what we have to prove. Otherwise, the function will not be well defined. 

After that we want to prove that this function is actually a homomorphism and then of course we

will prove that this homomorphism is surjective and so on. So, this homomorphism is called

Hurewicz homomorphism. So, let us do all these things now elaborately.
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The first lemma is that suppose,  are paths in  such that their composition is defined.

That means that endpoint of  is the starting point of . Then  is defined. As a singular 



-chain you can take . This -chain is null homologous. So, this can proved by 

-chain in  such that its boundary is this given -chain. 
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So, this is the starting lemma. The proof is completely obvious if you look at this picture. 
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In this picture, we have this triangle. I have cut it into  parts. Its vertices are  and . From

, you draw a perpendicular to the base edge . The base edge is divided into  parts, the

first part will take , second part will take  so that the original edge  is the domain of

. Also put  from  to  here in this way and  from  to  here this way. So, if you



trace  the  boundary  of  this  -simplex   to   to   back  to  ,  what  you get  is  the  -chain

.  So,  point  is  that  I  can  fill  up  this  whole  triangle  there.  viz,  extend

continuosly, the function defined on the boundary to a function into . How do I do this? Draw

the perpendicular divided  from the vertex . Then the triangle is divided into two parts. In the

first part, every point lies on a line segment joining  to a point  on  and define the function to

be  as shown by the arrow. In the second part, every point line on a segment joining  to ,

define the function to be  as shown by the arrow. The proof of the lemma is over.    

However,  if  you  are  not  convinced  with  this  kind  of  geometric  argument,  you  can  better.

However, the geometric argument given above is  actually necessary at least to get the idea how

to fill up the triangle. 

But finally,  what you have to  do is  to explicitly write  down the formula for  the continuous

function. I have been training you in this respect, so that you must be able to write down this

formula on your own. Here is the formula for the -simplex 
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Every point in this triangle is uniquely expressible as , where 

and  are all between  and  (the triangle is the convex hull of the three vertices.)  This is,

by definition the geometric realization of a standard -simplex . In that expression,  will be in



the first half of the triangle iff  .   lies on   if  , on  , if   and on

 if . Put  equal to  or  according as  is in the first half of

the triangle or in the second half. But you have to reparametrize. So, check whether this is done

correctly or not. There may be some typos and so on. So, you have to check that this is the

correct definition. 

Of course, you can immediately realize that this is not the only unique way to do it. You may

have different formulae. This is one neat way. So, what we have proved is that subdivision of

path  gives  a  homologous  element.  Take  a  path  and  subdivide  it.  Then  think  of  this  as  a

conctanation of the parts. As a chain you get a sum which is homologous to the chain represented

by the original path. 

This idea descends from the experience we have in line integrals. The integral on the entire path

is equal to sum of the integral on the subdivisioned paths. So, that is the kind of thing that is

happening  here.  So,  in  homology,  this  is  what  subdivision  gives  you.  We  will  do  more

sophisticated things soon. 
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So, next theorem is that the assignment  to  defines a functorial surjection from 

to  , (it  is denoted by a  ,) whose kernel is  precisely the commutator subgroup of

. 

The functoriality is easy to verify. Thus,   defines a surjective homomorphism with its kernel

precisely the commutator subgroup means what?  modulo its commutator subgroup is nothing

but the abelianization of  . It is isomorphic to  , by the first isomorphic theorem. So,   is

abelianization of  . That is very easy to remember.   is by definition an abelian group. It is

actually the abelianization of  is the final result here. Let us go ahead and prove this one. 
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The first thing to do is to verify that  is well defined, without which we have not yet defined the

function. So, let   from   to   be a path homotopy from   to  .  Consider  following

triangulation of  ; the vertex of the simplicial complex   consists of these four vertices,

 and   and  five  edges

 and  and the two obvious triangles.   and

.   have to be triangulate and then look at the homotopy  and think of it as a

sum of singular -simplexes. That is what I am trying to do. 
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So, put   and  . We claim that  . That

means that  is null homologous, or equivalently,  is homologous to . 
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By the very definition a homotopy of two paths has a property that on the end points the homo-

topy is a constant. This just means that  and  are singletons and hence they

are degenerate -simplexes. 



What is ? It is . Now  is . Similarly,

 So,   occurs with opposite  signs and cancels

out. It follows that 

So, we have verified that   is well  defined. Now, the first lemma will tell you that phi is a

homomorphism. Functoriality of  is something which is totally obvious here. But I will leave it

to you to think about that. So, you think about it and write down a proof. 
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For the rest of the proof we shall use a lazy notation  for  and  for . Also, in

the diagrams if I write the full notation these, it will be difficult to adjust within a slide. 
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Let   from   to   denote  the  canonical  quotient  homomorphism obtained  by  taking  the

quotient  by  the  commutator  subgroup  .  So,   denotes  the  fundamental  group

abelianised, namely, the quotient of  by the commutator subgroup.

Now   is an abelian group. Since any homomorphism from any group to an abelian group

always factors down on the abelianization, it follows that  factor down to give a homomorphism

 from   to   such that  . Our claim is that this   an isomorphism. Instead of

proving that  is a bijection, what I am going to do is to produce an explicit inverse for . 
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So, how does one do this. We use the typical calculus experience here especially the one in

constructing primitives. We have fixed a point  in . Use path connectivity of . For each  in

, take a path from  to  and call it  There are many paths. You take anyone. However, Let

us resolve not make life complicated. So, when you joining  to , just take the constant path at

, that is the only specification. You could have taken any other loop there is nothing wrong but

do not do that just to keep things simpler. 

Now let  be a singular -simplex in . What is the singular -simplex? This is just a path in .

It has a starting point  and an end point , say. There are paths from  to both of them. So, I am

going to define  to be the element in  represented by the loop  

Start from , trace the path  then trace  and come back to  via . That loop represents

an element in . Take its image under  in the abelianization. That is . Thus we have a set

theoretic  function  from  the  basis  of   into  the  abelian  group  .  So,   extends  to  a

homomorphism, I am writing it as  itself, from the free abelian group  to .

Note that if we had stopped at   level, since  may not be an abelian group the set theoretic

function may not extend to the hole of  . We claim that   vanishes on   and hence

defines a homomorphism  from  to  and that from here to  here is the inverse of .  So,

let us verify that one by one. 
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Take any singular -simplex gamma from  to . If I show that  is  then, since  is

generated by all these 's, i.e., every element of  is a finite sum of such 's that will prove that

theta vanishes on .

Let  be the standard face operators that we have been using all the time in the definition of .

Then . To define  of that, you have to join the end points of these -

simplexes to the base point . Because the boundary of any -simplex is a cycle, you can treat it

as  a  loop  at  some  point  .  Therefore,

.

But the loop   in   is the boundary of gamma defined on  

and hence is null homotopic in . So, its conjugate is also null homotopic. Therefore the term on

RHS is actually . I said that this element in  itself is trivial. So, when you go to  this

will go to  element. That proves that  is well defined. 
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It remains to verify that  is . Given  in ,  is represented by the -cycle 

itself.  You see  what  is  definition of  ?   is  just  the  be  round bracket  of  a  square  bracket.

Therefore, I do not have to search for some  etc here, to define  being already a loop at .

 is  itself. That shows that  is the identity of . 

Finally to show that  , start with a  -cycle in  ,   For each   I am

introducing paths from  to the starting point as well as the end point of  and converting them

into loops based at . As a chain itself, all these extra -simplexes will cancel out in pairs, since

 itself is a cycle. So, without loss of generality, I can assume that all the  are loops based at .

Therefore, we get a loop omega based at   viz., composition of   in whichever order you

please. it  follows easily that   and  . Recall  that introducing extra edges

suitably is a technique we learnt in complex analysis. 

This result about the relation between  and  is very useful in algebraic topology. Let me take

a few more minutes and give you one small application of product of CW-complexes. Again, this

result is already familiar to you and not a new one, though arrived in a different way. 
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So, let us compute the CW-chain complex of of the -dimensional torus, .  Recall that we

have given  a CW-structure with one -cell and one -cell. The product CW-complex will then

have a single -cell, two -cells and a -cell. That is the product CW structure on . 

So, it  follows that the associated CW-chain complex should have   and   respectively

equal  to   and  .  (I  should  actually  write   but  I  am just  writing a  short

notation here.) And  is  for . It is also clear that the boundary operators  from  to 

is the zero map, because the vertex set is a singleton and the attaching maps for -cells have to

the same constant function. So, when you take the boundary, it becomes point minus point, and

cancels out. So, on both the generators of , the boundary map will be . So, the entire boundary

 from  to  is the zero map. 

What is the boundary map from  from  to  ? There is only one -cell. The characteristic

map for this is the product   to  , of the two characteristic maps of the  -cells,   to

. 
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We have also seen that the attaching map of this -cell is the map  to  representing the

loop  in , where  represent the elements given by the two inclusions  to

. I have also elaborately explained how to compute the boundary map in the chain com-

plex . 

So,  look at  the  attaching map there  and take  projections  to  each  of  the  two factors   and

compute the degree of each of them. Then you can determine the function . This boundary loop

will have to trace the first factor once in a particular direction, then the second factor followed

again  by  the  first  fact  in  the  opposite  direction  and  finally  the  second  fact  in  the  opposite

direction.  in the opposite direction and  in the opposite direction. This is easily understood the

process of obtaining the torus as a quotient of a rectangular piece of paper.  

So from   iff  you project  onto  ,  the result  will  be zero

under both projections,  and  (and similarly,  and ) cancel out. Therefore, the  from 

to  is the zero map. The the entire chain complex looks like .

Therefore, kernel  of each   is the entire domain and the image of each   is  zero.  Thus the

homology groups of  are  and zero after that.

So, let us stop here. Next time we will be doing several of the proofs that we have postponed

while doing homology theory. So, we will go through some of the proofs. Thank you very much.


