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So,  we are  in  the  middle  of  proving  Jordan  Brouwer  theorem and Brouwers'  invariance  of

domain theorem. We proved these two statements modulo 2 important lemmas. 
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So, these two lemmas we need to prove now. The first lemma 4.6 says that for a subset of  

homeomorphic to , where  is between  to , the reduced homology groups of the complement

all vanish. The second lemma 4.7 says that  is a subset , homeomorphic , for  between 

and  , the reduced homology groups of the complement are zero except in the dimension

 and at that level it is an infinite cyclic group. So, we shall prove 4.7 first and then we

will prove 4.6. 

So, while proving 4.7, we use 4.6 and then once you prove 4.6 also, the two statements namely

Jordan Brouwer separation theorem and Jordan Brouwer invariance of domain theorem will get

proved. So, this is what we need to prove now. Now proof lemma 4.7. 
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So, we have to use Mayer-Vietoris sequence and apply induction on  . For  ,   has two

points and  setminus two points is homotopy equivalent to . If you remove one point, you

get a space homeomorphic to  or an open disc. You remove one more point then the space can

be  strongly  deformed  to  a  suitably  chosen  copy  of  .  In  particular   is  homotopy

equivalent to . We have already computed the homology of  from which the statement

of the lemma for  follows. Now assume that the statement is true for . 
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Now, take  which is homeomorphic to  in . It can be written as union of two closed sets 

and , each homeomorphic to . In , I can take them as standard discs intersecting along the



equator and then take their images as  and . So,   is homeomorphic to . Both

, (we throw away the closed subsets), are open sets in . Hence, we can apply Mayer-

Vietoris  sequence.  So,  you  get  an  exact  sequence  of  reduced  homology  groups:

 to   to   to

 This  is  the union  of  the  two sets,  the  morphism here is  the

connecting homomorphism and the next one here is the intersection of the two sets  and

. Put tilde everywhere. 
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By the previous lemma 4.6, all of   are zero. Therefore the arrow representing the

connecting homomorphism must be an isomorphism. So, the statement for   follows from the

induction hypothesis. Now the proof of 4.6: Here also we induct on . Now I have to prove that

 setminus any disc has the reduced homology trivial. For , What is that? It is just  set

minus a point which is actually homeomorphic to  . So, it is conductible, hence the reduced

homology groups vanish. Now assume the result for . 

Now,  suppose   is  not   for  some  .  (So,  we  are  going  to  prove  this  one  by

contradiction.) Then you should have a -cycle , representing a nonzero element in .

Remember that a -cycle means a -chain with its boundary being zero.  



A -chain being a finite sum of singular -simplexes, its support is going to be a compact set. So,

this is the topological fact that we are going to use now. So, let  be a homomorphism from  to

. (By hypothesis,  is homeomorphic to some ). Write . What are 's? We are

going to split this disc  into two halves along  cross the last coordinate . So, cut it in the

middle  along last  coordinate.   and  .   Both of

them are copies of again the disc itself.  We can apply Mayer-Vietoris sequence and conclude

something. (This is similar to what you did in the proof of Cauchy-Goursat theorem in complex

analysis and easier).
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Apply  Mayer  Vietoris  sequence,  to  the  excisive  pair   to  obtain  the  exact

sequence   to   to   to

Now what we are assumed, we have assumed that there is some element

in  which is not . Since  is homeomorphic to  by induction hypothesis

that these two end groups are zero and hence this middle arrow is an isomorphism. So the non

zero element goes to a non zero element in the direct sum.  
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But what is this isomorphism? It is   maps to  , where,   from   to

 are  inclusion maps.  It  follows that  at  least  one of  the two   is  non zero.  By

relabeling if necessary, we may assume that we have a half space   of   homeomorphic to

 such that under the inclusion map  from  to , we have  is non

zero.   

That is what you get using the Mayer Vietoris theorem. Now repeat this process, by replacing 

by , cut  into two halves and so on to obtain a  which is homeomorphic to  and

such that the image of  under the inclusion induced homomorphism is non zero.
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So,  we  keep  getting  a  nested  sequence   containing   containing  ...,  where  each

 with  being a nested sequence of closed intervals of length  and such

that the image of   under the inclusion induced map  from   to   is non zero in

.  By Cantor's intersection theorem,  intersection of all the   is equal to a single

point , in the last coordinate of .   

Put . Then by induction hypothesis, . Thus,  where

 from  to  is the inclusion map. Therefore there exists a -chain  in 

such that .  

As before, the support of   is compact in   which covered by an increasing sequence of

open  sets  .  But  then  this  implies   which  is  a  contradiction.  So,  that

completes the proof of the lemma and thereby the proofs of all the theorems.

As I told you, these two lemmas, they give you much more information than the theorems and

they will be quite useful elsewhere also. Now, I would like to make a few comments on Jordan

Brouwer theorem itself. This theorem belongs to a class of problems or results, namely study of

embedding of one sphere into another. 



These two lemmas tell you a lot about them. There are many more things of interest which we

cannot discuss here. So, Brouwer, while proving this famous theorem, he did not just prove one

single result but he has done a lot of work. Now let us understand in this slide a little bit about

the above problem in general. 
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Let us consider embeddings of  in , embedding means just topological embeddings-- one-to-

one continuous functions. Domain and codomain are compact Hausdorff spaces, automatically

such  functions  are  homeomorphisms  onto  their  image.  Two such embeddings  are  set  to  be

equivalent if you can `move' one embedding to the other embedding. What is the meaning of

`moving'? We have already defined homotopy. 

But here homotopy will not work, homotopy with an additional condition, namely, at each stage

it  must  be an embedding,  i.e.,  homotopy through embeddings.  (To begin with we have two

embedded objects you can move it from one to the other through embeddings, do not collapse, or

make overlap, cross itself and so on.) So, more specifically, you must have a continuous function

 from  to  such that for each fix ,  maps to  is an embedding,  is

 and  is . Then we can say that  is isotopic to . Clearly,  is always isotopic to

 itself,   is isotopic with   implies   is isotopic to  , etc. Just like homotopy is a transitive

relation you can even prove that isotopy is a transitive also. Therefore isotopy is an equivalence



relation. So, one is interested in knowing equivalence classes of embeddings of  in . So this

is a general problem. 

Now quite a bit is known about this problem. I would like to give you just some information

here, no proofs.
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Consider case, . What is the meaning of ?  has two points. Embedded in ? If  is

also , then there are only two possibilities either the identity map or the transposition and you

cannot isotope one to the other. So, there are two classes.  If  we consider two points in ,

or , etc. then since we know that all ,  are connected, we can join any two points by a

path. An isotropy of a point is nothing but just a homotopy, nothing more than that. Actually, we

have to see a little more here.  

Take any two pairs of points,  and  inside . You can join  to  by paths 

which do not intersect each other. That is not very difficult to see for . For , you must

check that. 

Next  consider  the  case  .  What  is  the  meaning  of  an  embedding  now.  It  must  be

homeomorphism from  onto the whole of . By the way, this requires a proof. Can you have



homeomorphic embedding of  inside , which is smaller than the whole of ? No. I am not

going to tell you the proof here. It actually follows whatever well have done so far. But I am not

going to do that one now. You have to think about that. 

So,  now the question is what are the self-homomorphism isotopy-classes  of  ?  This was a

classical problem at least in the differentiable case. It was solved quite long back by Smale and

Hirsch, etc. The answer is that there are exactly two classes. When you are dealing with just

homeomorphisms  which  may not  be  smooth,  there  are  always  more difficulties  than  in  the

smooth case. In the smooth case, namely diffeomorphisms, there are exactly two isotopy classes;

this is the standard result.  Namely, those which preserve orientation and those which reverse

orientation. It is easy to see that these two are distinct classes. Much more difficult to prove that

these are the only two classes.
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Now, consider the general case, . Our lemma 4.7 is ineffective here. The complement

of any embedded sphere has trivial homology accept in dimension . So, in some sense

to distinguish between two embeddings it is useless. It is a very good theorem but it is useless as

far as in distinguishing any two of them upto isotopy. The complements are homologically same.

So, what to do, there is no simpler way. So, we consider further special cases. When  and

 seems to be the most interesting of all the cases.
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So, before that I will tell you a deep result in PL topology.  It tells you that instead of topological

embeddings,  consider  the so called PL embeddings of   in  . If  the codimension   is

bigger than equal to , then any two embeddings are PL-isotopic. It is a fantastic result. So, 

embedded in , , or  embedded in , , there is only one isotopy class. 

In other words, whatever embedding you choose, you can move it around and bring it back to the

standard embedding. So, that is the meaning of saying that any two embeddings are isotopic to

each other. In particular, the complements of any two embeddings of   in   for   are

homeomorphic.

(Refer Slide Time: 25:13)



So, the only non trial cases are when  or . The case  is generally known as

knot theory, which is quite deeply studied branch of algebraic topology, with a lot of applications

in many other sciences like chemistry, string theory and so on. So, we shall not be able to discuss

this problem in any more detail, except that I want to tell you a few things. The case when 

and  is the most interesting one, that is where lots of problems are there. And classically,

the only thing that was done was to look at the fundamental group of the complement.

Now none of these theorems and lemmas not tell you anything about the fundamental group of

the  complement.  They  tell  you  only  about  the  homology.  The  fundamental  group  can  be

computed using Van-Kampen's theorem and what are called knot presentations. So, that will give

you a lot of information. 

Nevertheless, till 1980s, a lot of problems were unsolved till C. R. F. Jones came into picture and

cracked the whole thing by opening up a new way of thinking about the knots. So, it is now quite

a flourishing branch of algebraic topology. 
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So, finally for the case,  , let me give you a little more information on this one. For

, this is Jordan Brouwer theorem. Here we have a very strong theorem. From complex

analysis.  Namely,  Jordan-Schoenflies  theorem  (which  is  an  extension  of  Riemann  mapping

theorem) says that any two embeddings of a circle inside  are equivalent. In other words, if

you have any simple closed curve in the plane, you can bring it to the standard circle by an

isotopy.

With a little more extra assumptions, the same thing can be done in all other dimensions. First it

was  Mazur,  then  by  Morse  and  then  further  by  Brown,  each  time  weaker  and  weaker

assumptions. But still there is some assumption I do not want to go into the technicalities of that.

You can read this in Bredon’s book or one of Brown’s papers I have listed. Brown's paper is

very readable. So, you can look into that one. 

The  last  thing that  I  wanted  to  tell  you is  that  suppose  you remove the  extra  assumptions,

namely, take any topological embedding of  inside  What can you say? That was cracked by

Alexander long back in a negative way, constructing an example. It is now called Alexander's

horned sphere. 
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Obviously, the embedding is somewhat wild. So, he is going to put `solid horns' to the  and

what happens is it is actually an embedding of , and therefore, the boundary is obviously a -

sphere. But the complement is a complicated space, whereas the complement of the standard disc

in the sphere  is  also  a  disc.  So,  Alexander  is  are  able to  show that  the  complement  of  his

embedded disc  is  not  simply  connected  and  therefore  it  cannot  be  isotopic  to  the  standard

embedding. So, for lack of time I will not be able to present that one.
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But I will just give you the original picture of Alexander's horned sphere. So, this is supposed to

be the disc, if you cut it away here it is just a twisted disc with a  two horns. This is a big horn,



this is another horn. Each of them grow two smaller horns again like stags horns. And then all

the four of them will have two horns each. They all tend to get interlinked. 

As they keep growing, they are coming closer and closer.  In the limiting case,  there will  be

cantor  set  of  points  wherein  they  meet  finally.  So,  one  can show that  the  limiting space is

homeomorphic to disc, so the boundary is a -sphere.

But the complement of this embedded disc is complicated. One can show that its fundamental

group is very complicated. So, that is all I can tell you at this stage. Let us at a stop here. Thank

you.


