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So,  now we  come  to  the  celebrated  results  of  Brouwer  namely  Jordan-Brouwer,  separation

theorem and then using that will prove the Brouwer invariance of domain also. I would like to

tell you that in part one we had already proved the Brouwer invariance of domain directly using

cellular  simplicial  approximation  theorem and  Sperner  lemma.  But  we  could  not  prove  the

Jordan Brouwer separation theorem there. 

So, here we are proving the Jordan Brouwer separation theorem first then using that we will

prove  the  Brouwer  invariance  of  domain.  So,  this  is  completely  a  different  approach  and

historically, Brouwer, more or less came with these ideas of developing homology just to prove



this invariance of domain theorem one might say. So, the basic idea of the proof that we are

going to present is more or less as in Brouwer's original paper of 1911. 
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So, let me state them together because they go hand in hand in some sense, though the statements

are  quite  different.  So,  Jordan  Brouwer  separation  theorem is  an  extension  of  Jordan  curve

theorem which is for a topologically embedded circle in the complex plane, . Such a thing is

called a Jordan curve, a one-to-one continuous mapping of  into . 

So, this theorem was a sensation at that time because after the formal definition of a continuous

function  was  accepted,  lots  of  weird  examples  were  constructed  by  many  mathematicians.

Examples like Anthony's necklace, Piano's space filling curves which were continuous functions

on closed intervals but filling up  or  etc and even the countable product , were found.  

And there are many other kinds of weird examples. Nowhere differentiable, continuous functions

and so on. So, this positive result came as a pleasant surprise. But Jordan's proof was rejected by

contemporaries. Later on, it was Veblen who gave a proof that was accepted. After that, several

people have given several proofs and so-called proofs. Why is it `so called'? Most of them are

wrong.



Here we are  not  proving that  special  case  separately,  we are going to  prove  directly  the  -

dimensional version of that, namely an  sphere embedded in the -sphere separates it into

exactly two components. These two components have their common boundary as the embedded

-sphere, so this is the statement of Jordan Brouwer separation theorem.

The  Brower  invariance  of  domain  says  that  if   and   are  any  two  subspaces  of  

homeomorphic to each other and if   is open, then  is also open. So, that is the meaning of

invariance of domain, homeomorphic invariance of domain. One is open then the other must be

open. They must be subspaces of the same  to begin with. 
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So, toward the proof of them we will state two lemmas which themselves give you a better

picture of what is going on. Sometimes the lemmas can be quoted and used elsewhere, than the

theorems. So, these are quite interesting lemmas. 

So, the first lemma 4.6: Let  be a subset of , which is homeomorphic to , the closed interval

cross itself  times. (Instead of the sphere it is a disc that we are studying first. I am taking the

square model here, rather than the round model of the disc ). 



The integer  is between  and , like you can take a point viz,  or you can take an arc when

 or you can take a square when  and so on. The subset  need not be a rectangle even

or polygon etc). Then the reduced homology groups of   all  vanish. For instance when

, you know it; if you throw away one point from , the result is contractible. 

So, reduced homology vanishes. So, this is a far reaching generalization of that phenomenon. For

example, in the general case, we do not know whether  is contractible or not. I can say that

all the reduced homology groups are trivial, no matter  is provided it is homeomorphic to .

So, I would say that this lemma itself is quite useful. 

So, the next lemma 4.7: Suppose  is a subset of  homeomorphic to , for some  between 

and . Then the reduced homology groups of  are all  except in one single dimension

viz., . So, this lemma is also of importance in many theoretical problems. So,

what we are going to do is first we assume these two lemmas and complete a proof of these two

theorems. Then we will  prove 4.7 first  which is  easier though the statement  is  a little more

complicated.  The crux of matter  viz.,  lemma 4.6 will  be taken at last.  That  is  the plan.  So,

granting 4.6 and 4.7, we shall prove theorems 4.15 and 4.16.  So 4.15 first. 
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Namely, Jordan Brouwer separation theorem. Let  be a subset of  and homeomorphic to .

We have to show that  has exactly two connected components to begin with. Being open

subsets of  ,  they will  be also path connected. Call  them   and  . We have to show that

boundary of  must be equal to boundary of  must be equal to . These are two things that we

have to show. 

Now look at the above lemma. What is this lemma? Lemma is  is homeomorphic to , where

. So, it follows that , i.e.,  is isomorphic to , which is the same thing as

saying that the space has exactly has two connected components. That is very easy.

Let us call these two components  and . Now use the fact that both  and  are open subsets.

By definition, boundary of  is , but interior of  is  itself and hence boundary

of  is . Similarly, boundary of  is  We have to show that boundary of  is equal to

boundary of  equal to . This is what we have to show. Note that  is open and disjoint from 

,  is equal to the whole space . That is very clear. So, no point of  is in the closure

 because  is disjoint from  and  is open. Take any  point of ,  itself is a neighbourhood

that and it does not intersect . Therefore, it is not a boundary point. Therefore, boundary of  is

contained inside , it is not inside  because by definition the boundary of  is .  So, there

is a chance that this point may be inside , if it is not there also the rest of the thing is just .

This is purely set theoretic. So, the boundary of  is inside , one way out. So, now we have to

show that  is inside the boundary of , i.e., every point of  is a closure point of , then we are

done. By symmetry the same will hold for  as well.
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This is the same as showing that any arbitrary small neighbourhood   of   take a point

intersects  . So, inside , we can find a neighbourhood  of   such that  is actually a

union of  and  and both  are homeomorphic to . Here we are using the fact that  is

homeomorphic to . In other words, what I am doing is that I am taking  to be a small nice

disc around this point, so that its complement in  is also a disc. Inside a sphere, you can take a

small disc, so that the complement will also be a homeomorphic disc. 

So,   is  a  union of   and   and both the   are  homoeomorphic to  a disc of  the same

dimension equal  to  . I  am using the square model  here  . Here is  a picture. In this

picture, after all,  and  is a copy of a circle, and we are working inside a -sphere. This

picture is for curve inside . This green part is  and I have taken a point here  on the curve,

, this is . I want to show that every neighbourhood of  of  will intersects . Because in the

picture  it  is  obvious.  That  can  be  the  problem,  you  should  not  use  a  picture  to  conclude

something. Use only the hypotheses so far and the results you have proved.  Keep track of that.

That is all. 

So, there is a neighbourhood of a point , I would show that this neighbourhood intersects

. So, what I have chosen is, this   is homeomorphic to  , its complement in   is also

homoeomorphic to .
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Put   in the previous lemma 4.6. It says that   has its reduced homology  . In

particular,  of that  and so  is path connected. That is from the first lemma. So, we

take two points,   belonging to  and  belonging to . 

One is in here and other is there both are out of . So,  join them by a path in . But 

and  are different components of  Therefore, you cannot join them in  Therefore

the path must intersect  and hence it must intersect . Let us say that we have parameterized

the path from  to , by  defined on  so that  and . There will be a first 

or the smallest  for which  belongs to , this green part. That point , whatever the point

is, is obviously in the closure of , because the entire  is in . 

What does that mean? We have chosen  inside . Therefore,   belongs to . Every

neighbourhood   of  every  point  in   intersects  .  That  is  what  we  have  shown.  So,  that

completes a proof of Jordan Brouwer separation theorem.  
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Now we will come to Brouwer's invariance of domain theorem. So,  and  are subspaces of 

. By taking one-point compactification, we can work inside . If  (or  ) is open in   iff  

(resp.  ) is open in  . The assumption is  that   and   are homeomorphic. So, let us fix a

homeomorphism phi from  to .  

For definiteness, assume that  is open. I have to show that  is open. So take a point inside 

which I can always write as , where  itself is inside . What do I have to do? I must

produce  an  open subset  in   actually,  which  is  contained  inside   and  contains  the  point

. If this is true for every  , then I have completed the proof that   is open. So, we

should produce an open subset of  containing  and contained in . 

So, now Jordan Brouwer separation theorem comes to help here in a miraculous way, in proving

this great theorem. So, let  be a neighbourhood of  which is homeomorphic to the closed disc

 and contained inside . That is possible because  is open in .

 

Then the boundary of   is homeomorphic to  . If we apply   which is a homeomorphism

from all of  into , (boundary of )=  will be an embedding of  in . Of course it is

contained  inside   also.  By  Jordan-Brouwer  separation  theorem   has  precisely  two

components and both components are obviously open subsets of . 



Look at   minus boundary of , that is homeomorphic to the open disc. (I have taken  to be

homeomorphic to  the closed disc.)  It  is  connected  and its  image under   is  also connected.

Therefore, (  - boundary of )=  is connected. By lemma 4.6,  is connected

because  is a homeomorphic a disc. Hope you have got the picture so far.  
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On the other hand,   disjoint union with  . Because   is closed,

 is open.  is closed, of course so,  is open in . Just from this, we cannot

conclude that  is open in .

However, these two sets are connected subsets. Therefore each must be contained in one of the

two components of  . There are only two components here. Since the whole space is the

union of these two connected subsets, they must be the two components. This is an elementary

topological  result  that  I  am using.  In  particular,   being  a  connected  component  of

 is  open.  (So, this would have been  obvious if  you think Jordan  Brouwer theorem is

obvious.)

So,  is an open subset of  and also it contains the point  and it is a subset of

, because the entire map   is from   to  . Thus, we have succeeded in producing an open

subset around , contained in . So, this proves that  is open. 



Thus, using the two lemmas, we have completed the proof of two big theorems. So, the two

lemmas, we will prove next time. Thank you.


