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We  are  discussing  the  applications  of  homology.  And  in  particular  last  time  we  saw

Lefschetz's  Fixed point theorem theorem today we will  give you some applications of it.

Recall that we have proved the hairy ball theorem by just using our computation of the degree

of antipodal maps right? Here we will do it in a slightly different way using Lefschetz's fixed

point theorem.

In  any  case,  recall  that  the  famous  hairy  ball  theorem,  which  has  its  origin  in  different

topology, says that you cannot comb your hair without parting at least at  one point.  The

precise mathematical statement is that there is no nowhere vanishing smooth tangent vector

field on , where  denotes the even dimensional standard unit sphere in . 

However, you should also see that all odd dimensional spheres have plenty of such tangent

vector  fields.  For  example,  you  can  directly  write  down  a  formula,   namely,

,  coordinates  of  an  odd  dimensional  sphere,  mapping  to

. okay? Note that  is a unit vector and is  orthogonal

to . And hence defines a vector tangent to the sphere at the point . So, there are many other



possibilities also.  But for even dimesion, you cannot do that. That  is the statement of this

Hairy- Ball- Theorem. Okay?
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The topological version removes the smoothness part. It says that there is no continuous map

 from  to  such that for each point in ,  is orthogonal to . Okay? So, we need

not worry about tangent fields etc. here because this is not a smooth version. This is just a

continuous version, which makes sense and is a stronger than the smooth version above. So,

here is theorem that I am going to prove, namely, for any continuous function from an even

dimnsional sphere to itself, there is a point  in  such that either  is  or  is ,

which is clearly, stronger than the Hairy Ball Theorem. So, you see Brouwer fixed point

theorem says every continuous function from  to  has a fixed point. And this is slightly

away from that, namely, either  or  has a fixed point.

Unfortunately or otherwise,  it  is only for even dimensional spheres.  For odd dimensional

sphere we have seen that it is not true okay? Suppose the statement is not true. That means

that there exists a continuous function  from  to  such that  is not equal to .
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So, x and f(x) are always distinct and not antiphonal. Therefore, the line joining them will not

pass through the origin. Is that clear? whenever you have distinct two points there is a unique

line segment joining them. Because  is not equal to  also, okay, this segment will not

pass through the origin. That means, our entire line segment consists of nonzero elements. If

you write , where  lies between  and , this will give precisely all points of

the line segment. They are all nonzero vectors in . So, I can divided by the norm to get

a map into  itself. With this definitions, you get a continuous function  from  to

. For  , what is this? Put  , it is  . But   is already  . So, it is

. Similarly when , this would be . So,  is again .

So,  is a homotopy of  with the identity map. So, every such map must be homotopic to

the identity map. okay? That means that the Lefschetz number  is equal to the Lefschetz

number of the identity map, which is the Euler characteristic of  . Euler characteristic of

 is very easy to compute.  and  and the rest of the  are zero.

So, we get  Therefore, the fixed point theorem says

that   must have a fixed point. But by our assumption, there is no fixed point. So, that is a

contradiction.
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Next, recall that we have computed the degree of the antipodal map on the spheres right? We

can  do  that  in  a  slightly  more  general  situation  also  here  okay?  Let  us  give  another

application of LFT. Fix . Recall that we have . We have done this we have

done  it  earlier.  Therefore,  for  any  continuous  function  from   itself,  the  induced

homomorphism on  -th homology, a endomorphism of  , is given by multiplication by an

integer. This integer is called the degree of , right? This was the latest definition of degree.

There are several definitions. So, some of them I have asked you to check whether they are

equal or not okay.

Also,  .  Indeed, for recall that any continuous function from a path connected

space to itself, the induced homomorphism on  is always identity map. Therefore, the trace

there  will  be  exactly  .  okay?  Since  all  other  homology  groups  vanish,  it  follows  that

,  which  is  nothing  but  the  the  degree  of  .  So,

So, this formula can be used to compute  if you know the degree. Or you can compute

the degree of  if you know . So you can use this in either direction. okay? For instance

consider the case when  map from  to . This has no fixed points, okay? It follows that

. Okay? If you take antipodal map of of an odd degree , okay, antipodal map of no

fixed points  in  any case  okay.  So,   must  be  .  So,  that  means  for   must  be  .

Therefore, the degree will be equal to .
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So, this argument is applicable to any map without a fixed point, why only antipodal? So, this

is the extra thing that we get. (There was no way to do this kind of things without the fixed

point theorem). 
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So, more generally, if you take a homeomorphism from  to , then  is an isomorphism

on the homology. Therefore the degree must be , because under an isomorphism of , the

generator must go to plus or minus of the generator. So, degree with . If, in addition,  has

no fixture points then   is   and hence degree must be  . Therefore, we have another

corollary here for you. See we have not done much deeper mathematics here, but we are just

seeing the different sides of the same coin and deriving different results.  
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Let  be a group of odd order acting on , okay? For any (continuous) group action on a

spaces , automatically, the left translations  taking  to  will define a homeomorphism

of , for each . 

So, for each , there exists a   belong to   such that  . So, you cannot have a

fixed-point-free action of an odd order group on an even dimensional sphere. This negative

result is the starting point of a big theory anyway okay? We are just touching it and leave at

that. We state it:   be a group of odd order acting continuously on . Then it must have

fixed point. Okay?
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How do you prove that. Take   belongs  ,   go going to   defines a homeomorphism 

from  to , okay? Note that  is the inverse of . Now, the degree of a map has the



property that  .  Therefore we have  , the odd

power. Therefore degree of  must be . Therefore, the Lefschetz number . This

means  has a fixed point.

In the remaining time, we will take up one of the postponed proofs which is very easy and

would not take much time.
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The equivalence of CW-homology and cellular homology, okay? Cellular singular homology

okay. For a CW complex, the CW homology itself is equivalent to the singular homology, we

shall see later. So, we have also introduced a cellular singular homology in between these

two. So, I want to say that that is also equivalent to the singular homology. So, this is the

statement of 4.10. I have just stated here what it is; the basic idea here will be used elsewhere

also, for instance, in the proof of the homotopy invariance. Here it is much, much simpler.

There we have more elaborate structure.
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So, this is called a retraction operator,  I have stated it  this way, so that you can quote it

elsewhere. Suppose you want to study something later on, this will be very useful, elsewhere

in algebraic topology. So, I have stated this step separately as a lemma instead of just proving

the theorem directly. So, this lemma plays the key role in proving this one and this can be

used to do something else also.

So,  let  ,  (it  is  just  a  generic  notation now,  and  not  the  simplicial  chain  complex  of  a

simplicial complex as used earlier) be any sub chain complex of the singular chain complex

,  freely  generated  by  some  singular  simplexes.  Note  that  every  submodule  of

 is free, but I am stating it very clearly, that it is really generated by some simplexes

okay, the basis itself is a subset of the standard basis for .

Assume that to each singular simplex  from  to , (I am stating the whole thing here in

an unrelated way,  but  relative version is  got  easily from this,  okay?)  So, take a  singular

simplex  sigma  inside  ,  those  are  generators  for  ,  remember  that.  There  exists  a

singular prism. Okay? What is the meaning of a prism here? It is map  from  to ,

So the domain is the prism, closed interval cross . With the following properties okay? So,

what are these properties? At the -th level  is just . At the -th level, it is inside , okay?

 is a subcomplex of  okay, that is a hypothesis. 



Next,   from   to  .  That  is  composing  with  ,  it  is

 Okay?  So,  at  the  top  level  for  each  face  operate  ,  it  should  have  this

property.

Next if  is already in  then this must be just the identity,  for all , and

all , okay? Finally, if  is in  then  should be completely inside .

This condition is for the relative part. 

So, such a thing will  be called a retraction operator.  Suppose you have such a retraction

operator  . Okay? For each  , a generator for  ,   gives a homotopy to an element of  

okay?  is a retraction why? Because if  is already inside , the entire homotopy is identity.

That is why the name retraction operator is justified. okay? 

Conclusion  is  that  then  there  is  a  chain  deformation  retraction  tau  from  the  pair

 to . In particular, the inclusion of map  to , is a  chain

deformation attraction. That means it is retraction and there is a chain homotopy which is

identity on  In particular the inclusion map induces isomorphism in homology. So, this part,

the last part is clear because deformation retraction has that property.
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So, the proof is very easy. All you have to do: taking  restricted to 

,  the  -th level,  you have a function defined on the generating set of   to  a  module  .



Therefore, you can extend it linearly over all of   okay, to get a chain map tau from

 to 

It follows that   is a chain retraction, okay? All that you do is to appeal to part(c). So, you

have to verify  that tau commutes with  the boundary operator,  which is  absolutely trivial

verification. These hypothesis on  have been chosen for this purpose.
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Now a chain homotopy  from identity map to  is defined by , where

 is the prism operator which we have defined earlier okay. So, I will not go into this one

now. So, when you come across with this one again we can explain that.

(Refer Slide Time: 24:30)



Now, what we have to prove is the equivalence of these two homologies. All that I need to do

is  to  construct  such  a  retraction  operator.  Okay?  where  this   will  be  now  taken  as

 inside . Take this special case. So, that is what I will do. Okay.
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So, that is what I will do.
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I  complete  this  one  by  appealing  to  the  cellular  approximation  theorem.  Given  any

continuous function  from  into , all we do is to choose a cellular approximation to it

and the homotopy of the original map with the approximation, which gives the prism . A

cellular approximation comes with a homotopy; that homotopy is . 



Start with a , take a cellular approximation. For that what you have to do? Nothing, you do

not have to do anything, there is cellular approximation theorem okay? There is a homotopy

also, just take that homotopy of  to the  cellular function which is in  Okay? And if  is

already  a  cellular  map,  do  not  do  anything  you  have  to  choose   to  be  the  identity

homotopy.  Each  as to be defined independently. There is no continuity argument here at

all, because for each  which is a generator, I have to do separately for that. Okay? So, what I

do, if it is already cellular, I keep  as identity cross , that is all. So, we can just take  that

equal to  in that. So, this is automatically satisfied.  

Next time, we will continue with the applications of this homology, namely, the big promise,

Jordan-Brouwer separation theorem, Jordan-Brouwer invariance of domain and so on, thank

you.


