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So, today we will start a new chapter namely applications of homology. Here, we will do a few

popular applications of homology. Some of these results one can prove in different methods also.

And some of them you have already seen in part I, without using the homology theory. Ok? So,

having said that, the idea of proving these things is to emphasize how homology theory actually

helps in many problem solving in topology especially in algebraic topology.

So,  we  begin  with  the  famous  Brouwer's  fixed  point  theorem,  then  go  on  to  prove  the

Leftschetz's fixed point theorem which is an improvement on Brouwer's theorem. And then we

prove  some popular  results  such as  hairy  ball  theorem,  Jordan-Brouwer separation  theorem,

Jordan-Brouwer invariance of domain etc. So, these are all very,  very popular results. When

these things were proved, algebraic topology itself became extremely popular because of such

results. Ok?
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So, we begin with a lemma which has reminiscent of certain things that we have done in part I

using the fundamental group. Instead, we now use the homology groups, ok? Let  be a retract

of  , then   will be a retract of  , that is,   is a direct summand of  ,

which is somewhat stronger, Ok? For topological spaces  and ,  is a subspace of ,  is a

retract of  does not yield such decomposition. All that you have is a continuous function from

 to  which is identity on , ok?  is the continuous function from  to ,  is inclusion map of

 into , start with  and then follow by  that is the identity of . This is the meaning of saying

that  is a retract of . 

When you pass to the homology, it will tell you that   is a retract of . That means

there is a homomorphism from  to , etc., where to look for it? It is nothing but . 

itself induces a homomorphism and that will have this property  . Ok? So,  

from  to  is a retraction, then  from  to  is a retraction. . So,

that  is  the meaning of saying that   is  the retraction.  And whenever you have retraction of

abelian groups, the subgroup  becomes a direct summand, ok? This is a general theory for

abelian groups. Ok?
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As a corollary we have: For any ,  is not a retract of . So, this sounds like a negative

result but this is a very positive result. ok? Remember, in part I, this was a stepping stone in the

proof of Brouwer-fixed point theorem using simplicial approximation and Sperner lemma. So,

here the same thing comes very easily. No need for a deeep result like Sperner lemma and so on.

But  of  course  we  have  to  use  whatever  homology theory  that  we  have  done.  Namely,  the

simplest thing that we have done was the computation of  and . We know that

 because the disc is contractible, and  is infinite cyclic. Ok? If  were a

retract of  , then   would have been a subgroup of  , which is  . But the

subgroup is not . That contradiction proves the corollary.

So, observe that the functorality of the homology is strongly used here in this theorem. See from

the hypothesis that   is identity, in topology we have got the corresponding statement that

 is identity in the group theory, in the homology, Ok? 
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I have already told you, but  I  will  repeat  it.  In part  I  we have proved the above result in a

different way using simplicial approximation and Sperner lemma. The present proof is obviously

shorter though it uses big machine of homology. Ok?
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We have  also  seen  that  the  above  corollary  is  actually  equivalent  to  Brouwer's  fixed  point

theorem. So, we shall not bother about proving Brouwer's fixed point theorem again, once you

have got this corollary, ok? You have got then of Brouwer's fixed point theorem. Namely, any

continuous map from  to  has a fixed point. Ok? So, I am not going to discuss this one

anymore, because it was done very thoroughly in part I. 



So, let us directly go to the Lefschetz fixed point theorem now. As a consequence you will get

another proof of Brouwer's fixed point theorem also. Therefore, we do not need spend any time

on Brouwer's fixed point theorem separately. 

So, our next application is a generalization of this BFT is for any any compact polyhedron. Since

 is a compact polyhedron, it will be applicable to  also. Now we shall have some hypothesis

on the map itself. Ok? On the polyhedron, only compactness is the assumption. On the map we

have some additional assumption.

 Recall that given an endomorphism  of a finitely generated graded module , here I take the

liberty to shorten the notation   to just  , ok? We define the Lefschetz number   as the

alternate sum of the traces of each . . Ok?

So,  I  am just  recalling a  result.  Recall  that  if   denote  the homomorphism induced  on  the

homology groups of the chain complex  , then  , ok? So, this Lefschetz number

will be used now in the statement of Lefschetz fixed point theorem. For any continuous map 

from   to   on  a  space   that  has  finitely  generate  homology  groups,  we  now  define

. The well known Lefschetz fixed point theorem will be the following. Ok?
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Let  be a compact polyhedron, which means what? There is a finite simplicial complex , 

is homeomorphic to . ok? (So, presently, do not worry about the simplicial structure here, just

take the underlying topological space . Let  from  to  be a continuous function. If  is

not , then  must have a fixed point.

In Brouwer's fixed point theorem, there was no assumption on   except that   is continuous,

whereas  itself was very special viz.,  just the closed the unit disc. Any thing homeomorphic to

a disc will also do ok? But here this   is any the underlying   where   is arbitrary finite

simplicial complex. The extra assumption was on the continous function. So, how do you derive

Brouwer's fixed point theorem from Lefschetz's? 

So, if   is  , ok, any map   from   to   is homotopic to the identity map, this   is a

homotopy invariant, because it depends only on  on homology groups. Therefore,  will be

equal to  . Now   of the identity map is easy to compute. In fact, on a path connected

space , we have proved that for any continuous map  from  to ,  from  to 

is the identity map. Since  is infinite cyclic, it follows that trace of . So,

the  hypothesis  for  LFT  viz.,  that   not  zero,  is  satisfied.  That  gives  an  easy  proof  of

Brouwer’s fixed point theorem from this theorem. Ok?
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So, let us go to the proof of this itself now. So, this is what I have said here, I will repeat it. If 

is  then  is homotopic to identity map of , because  is contractible. Any two functions

into  are homotopic. Since  is a homotopy invariant, it follows that  is . But 

of  identity  map  is  nothing  but  Euler  characteristic   which  is  equal  to  ,  because   is

contractible.  Ok? Thus the requirement of the theorem is satisfied. So, in conclusion, we can say

that   has a fixed point. This shows that Lefschetz fixed point theorem is a generalization of

Brouwer’s fixed point theorem.

Indeed, we have just derived a stronger version of Brouwer’s fixed point theorem, namely any

self  map of  a  compact  contractible  polyhedron  has  a  fixed  point.  We never  used that   is

actually homeomorphic to , only contractibility was used. Ok So, this is another intermediary

result, you may note down which follows from Lefschetz fixed point theorem. So, let us see

some more results also. But before that let us try to complete a proof of this. 
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Given a compact polyhedron and a continuous self map, suppose it has no fixed points. Then we

want  to  show that   is  .  Now this  being  a compact  polyhedron,  viz.,  we have  a  finite

simplicial complex  such that . We have seen that there is always a linear metric, ok,

you can choose any linear metric and find an  such that distance between  and  is bigger

than this  for every  belonging to . Alright, why this is true?



You have to do some topology here. On a compact metric space, the distance between  and 

is  a  continuous  function,  ok?  A  real  valued  continuous  function,  positive.  So,  it  attains  its

minimum and that means that minimum will be strictly positive. Take that positive number to be

epsilon. Then everything else will be bigger than that. ok? 

Now, I will fix a finite simplicial structure on , I do not care what it actually is but that it is a

finite triangulation on . Now,  is nothing but , Ok? Next  I can choose a subdivion  of

, (by repeating barycetric subdivsion as many times as required, for instance) so that the mesh

of   which is the by definition, maximum of the diameters of all the simplexes, is less than

epsilon  by  .  Ok.  We have  done  this  in  part  I.  All  that  you  have  to  do  is  to  keep  taking

barycentric subdivisions. Each time the diameter becomes  times original one where . So,

if you repeat it several times then it will be less than given number. Ok
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Replacing   by  , we can as well assume that mesk of   itself is  less than  .  Now by

simplicial approximation theorem applied to the continuous function  from  to , we get a

integer  and a simplicial map  from  to  to the function . That means, in particular

that  is homotopic to . Therefore,  is the same thing as . You want to show that a

 is . We can do that by showing that  is . Ok? So, that is what we are trying to do

now.  How do we how do we use this information all this information? Why all this was done? 



So, the first thing we claim is the following. Take   to be any simplex of  . Then

there is a  belonging to  such that  is contained inside . That is a property of subdivisions.

The claim is that  is empty. For this we have to use the facts that   is a simplicial

approximation to ,  has no fixed point,  is chosen in a particular way and then the simplicial

complex is chosen in a particular way viz, mesh of  is smaller than , etc. Since  was inside

sigma, where as points of  will be carried away from . This is a strong claim that we want to

prove now. ok?

Suppose this is not true, that could mean that there is a point  in the intersection. That means 

in  and such that  belongs to . Ok? Then both  and  will be inside . Now the

diameter of  is less than . Therefore distance between  and  will be less than . On

the other hand   is a simplicial approximation to  . So,   is   will be the same same

simplex of  . Since the mesk of   is less than , it follows that distance between  and

 is less than . By triangle inequality it follows that the distance between  and  will

be  less  than   which  is  a  contradiction  to  the  choice  of  ,  being  the  minimum of  such

distances. In particular, it follows that the simplicial map  has the property that  and  are

disjoint for every simplex  in  
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Now the only problem is that when you take the simplicial approximation, you have taken a

subdivision of   and then the domain compelx and codomain are different.  Thus the chain



complexes of the domain and the codomain are different. So, there is no concept of trace of a

morphism. Trace is defined only for an endomorphism of the module to itself and not for an

arbitrary homomorphism. So, that is the difficulty here and it has to be overcome somehow and

there are different methods of doing that. So, I will give you twp methods here which I like,

some other methods I do not like and I even doubt them.
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So, in the first method I use the CW-structure on  associated with the simplicial complex  on

both domain and codomain. Then it follows that  from  to  is a cellular map. Any -cell

will be mapped into the union of -cells by  since it is simplicial from  to . Therefore

we can now pass of the morphism induced by  on . 

Let  this  map be denotes  by   from   to  itself.  So,  I  have  the domain and

codomain are same here. If an  -simplex   is a generator, (this is the meaning of oriented  -

simplex, ok), it follows from the above property of  that  is empty, right? That 

is a finite sum of certain oriented -simplexes the support of none of which will intersect . But

this will means that coefficient of  in the . 

It follows that if you write down the matrix for  using the set of -simplexes in  as the basis,

the diagonal entries of this matrix will be all . That means the trace of  is . Therefore trace of



 is  . This is true for all   right? Therefore, the alternating sums will be also . That means

. That is what we wanted to prove. 
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The  second  method  is  slightly  more  elaborate,  but  it  teaches  you  something  about  the

subdivision chain map also. So, how to use subdivision map? Ok. The property of sibdivision

chaoin map, whatever, we are going to use here, will be useful elsewhere also. So, here take the

subdivision chain map , which you have defined from  to  . Little   is the

barycentric subdivision, whereas  is the subdivision chain map. Ok.

We have seen that this  induces identity homomorphism in the homology. That is the beauty.

You can forget about this   and go to   to  , it is identity morphism there. By

repeated application of this, take compositions of  with itself  times, it follows that  from

 to  induces the identity map on the homology. 

So,  I  can  compose  it  with   from   to   to  get  an  endomorphism  of

 to , viz.,  . When you pass on to homology, it follows that the

induced morphism is the same as . Therefore,   which can be computed

at the chain complex level.
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Taking the -simplexes of  as a basis, consider the matrix associated to 

at the -chain group. Property (35) here will tell you that if you write the expression for  for

any simplex  in , it will not consist of  at all. That argument is the same as in the earlier

case, ok? Hence the matrix of  will have all diagonal entries , so that its trace is . Alternate

sum of these traces will be also .
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So I think I will have stop here. We shall see some interesting applications of the Lefschetz fixed

point theorem itself next time. Thank you.


