Introduction to Algebraic Topology (Part-1I)
Prof. Anant R. Shastri
Department of Mathematics
Indian Institute of Technology-Bombay

Lecture-41
Some Applications of Homology

(Refer Slide Time: 00:12)

Module-39 Some Applications of Homology

I this chagies, we shall gne some of th pagilar spphcabions al
homaology theery. Mamy of these results can be areed at by
dilferany methods, Some ol them we have slready seett |5 Part-|
We begin with Brower's fined point thearem, and then go on i
eiprove this to got Lofscheta's fiied point thoorem, We than prove
the hairy bl theorem, Jordan-Browwer's sparaticn {hearem and

Brouser's thearem an imvariance of damain

L}
e e e e
So, today we will start a new chapter namely applications of homology. Here, we will do a few
popular applications of homology. Some of these results one can prove in different methods also.
And some of them you have already seen in part I, without using the homology theory. Ok? So,

having said that, the idea of proving these things is to emphasize how homology theory actually

helps in many problem solving in topology especially in algebraic topology.

So, we begin with the famous Brouwer's fixed point theorem, then go on to prove the
Leftschetz's fixed point theorem which is an improvement on Brouwer's theorem. And then we
prove some popular results such as hairy ball theorem, Jordan-Brouwer separation theorem,
Jordan-Brouwer invariance of domain etc. So, these are all very, very popular results. When
these things were proved, algebraic topology itself became extremely popular because of such
results. Ok?
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So, we begin with a lemma which has reminiscent of certain things that we have done in part I
using the fundamental group. Instead, we now use the homology groups, ok? Let A be a retract
of X, then H.(A) will be a retract of H,(X), that is, H.(A) is a direct summand of H,(X),
which is somewhat stronger, Ok? For topological spaces A and X, A is a subspace of X, Ais a
retract of X does not yield such decomposition. All that you have is a continuous function from
X to A which is identity on A, ok? r is the continuous function from X to A, ¢ is inclusion map of
A into X, start with 7 and then follow by 7 that is the identity of A. This is the meaning of saying
that A is a retract of X.

When you pass to the homology, it will tell you that H,(A) is a retract of H,(X). That means
there is a homomorphism from H, (X)) to H.(A), etc., where to look for it? It is nothing but r,. r
itself induces a homomorphism and that will have this property 7« o ix = Idp, (a). Ok? So, 7
from X to A is a retraction, then 7 from H.(X) to H,(A) is a retraction. 7 0 ix = Idg, (a). So,
that is the meaning of saying that r, is the retraction. And whenever you have retraction of
abelian groups, the subgroup H.(A)becomes a direct summand, ok? This is a general theory for
abelian groups. Ok?
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As a corollary we have: For any n > 0, S™ is not a retract of D", So, this sounds like a negative
result but this is a very positive result. ok? Remember, in part I, this was a stepping stone in the
proof of Brouwer-fixed point theorem using simplicial approximation and Sperner lemma. So,
here the same thing comes very easily. No need for a deeep result like Sperner lemma and so on.
But of course we have to use whatever homology theory that we have done. Namely, the
simplest thing that we have done was the computation of H,,(S") and H,,(D"*'). We know that
H,(D™"1) = 0 because the disc is contractible, and H,,(S™) is infinite cyclic. Ok? If S™ were a
retract of D", then I,,(S™) would have been a subgroup of H,,(D"!), which is 0. But the

subgroup is not 0. That contradiction proves the corollary.

So, observe that the functorality of the homology is strongly used here in this theorem. See from
the hypothesis that r o ¢ is identity, in topology we have got the corresponding statement that
7, © 1, 1S identity in the group theory, in the homology, Ok?
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I have already told you, but I will repeat it. In part I we have proved the above result in a
different way using simplicial approximation and Sperner lemma. The present proof is obviously
shorter though it uses big machine of homology. Ok?
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We have also seen that the above corollary is actually equivalent to Brouwer's fixed point
theorem. So, we shall not bother about proving Brouwer's fixed point theorem again, once you
have got this corollary, ok? You have got then of Brouwer's fixed point theorem. Namely, any
continuous map from D" to D™ *! has a fixed point. Ok? So, I am not going to discuss this one

anymore, because it was done very thoroughly in part 1.



So, let us directly go to the Lefschetz fixed point theorem now. As a consequence you will get
another proof of Brouwer's fixed point theorem also. Therefore, we do not need spend any time

on Brouwer's fixed point theorem separately.

So, our next application is a generalization of this BFT is for any any compact polyhedron. Since
D™ is a compact polyhedron, it will be applicable to D" also. Now we shall have some hypothesis
on the map itself. Ok? On the polyhedron, only compactness is the assumption. On the map we

have some additional assumption.

Recall that given an endomorphism 7 of a finitely generated graded module C, here I take the

liberty to shorten the notation C'. to just C, ok? We define the Lefschetz number L(7) as the

alternate sum of the traces of each Tn. L(7) = Z(—l)"tmce(T n). Ok?

So, I am just recalling a result. Recall that if 7, denote the homomorphism induced on the
homology groups of the chain complex C, then L(7) = L(7.), ok? So, this Lefschetz number
will be used now in the statement of Lefschetz fixed point theorem. For any continuous map f
from X to X on a space X that has finitely generate homology groups, we now define
L(f) = L(f«). The well known Lefschetz fixed point theorem will be the following. Ok?
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Let X be a compact polyhedron, which means what? There is a finite simplicial complex K, | K|
is homeomorphic to X. ok? (So, presently, do not worry about the simplicial structure here, just
take the underlying topological space X. Let f from X to X be a continuous function. If L(f)is

not 0, then f must have a fixed point.

In Brouwer's fixed point theorem, there was no assumption on f except that f is continuous,
whereas X itself was very special viz., just the closed the unit disc. Any thing homeomorphic to
a disc will also do ok? But here this X is any the underlying |K | where K is arbitrary finite
simplicial complex. The extra assumption was on the continous function. So, how do you derive

Brouwer's fixed point theorem from Lefschetz's?

So, if X is D", ok, any map f from X to X is homotopic to the identity map, this L(f)is a
homotopy invariant, because it depends only on f, on homology groups. Therefore, L(f) will be
equal to L(Idx). Now L of the identity map is easy to compute. In fact, on a path connected
space X, we have proved that for any continuous map f from X to X, f. from Hy(X)to Ho(X)
is the identity map. Since H((ID") is infinite cyclic, it follows that trace of f. =1 = L(f). So,
the hypothesis for LFT viz., that L(f) not zero, is satisfied. That gives an easy proof of
Brouwer’s fixed point theorem from this theorem. Ok?
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So, let us go to the proof of this itself now. So, this is what I have said here, I will repeat it. If X
is D™ then f is homotopic to identity map of D", because D" is contractible. Any two functions
into D™ are homotopic. Since L(f) is a homotopy invariant, it follows that L(f)is L(Id). But L
of identity map is nothing but Euler characteristic D™ which is equal to 1, because D" is
contractible. Ok? Thus the requirement of the theorem is satisfied. So, in conclusion, we can say
that f has a fixed point. This shows that Lefschetz fixed point theorem is a generalization of

Brouwer’s fixed point theorem.

Indeed, we have just derived a stronger version of Brouwer’s fixed point theorem, namely any
self map of a compact contractible polyhedron has a fixed point. We never used that X is
actually homeomorphic to D", only contractibility was used. Ok So, this is another intermediary
result, you may note down which follows from Lefschetz fixed point theorem. So, let us see
some more results also. But before that let us try to complete a proof of this.

(Refer Slide Time: 12:21)

Proal: Given & compact realyhedran X snd & continugus se-map
fi & =& with ne ficed peints, we shall show that Lif) =0
Fiing some lingar metric on X, we can find ¢ = {f such that

M. T [x)) =6 ¥ 2B X (Why)

Let K be a simplicial comples that trangulates X and such that

|
i

mesh M o= e lillam F © F e K) <q/3

fFu instance, wa can sian with any smphicial comple that
tnangulates X and then take K to be the (sufficestiy often|
Tefatel Bariaili e sibitdeson of i 10 make 08 mesk as snall as
e pleise. [ This i immédiati from the gne of the lemmas proved
i Pt |

e e T e
L=

Given a compact polyhedron and a continuous self map, suppose it has no fixed points. Then we

want to show that L(f) is 0. Now this being a compact polyhedron, viz., we have a finite
simplicial complex K such that| | = X. We have seen that there is always a linear metric, ok,
you can choose any linear metric and find an € such that distance between = and f(z) is bigger

than this e for every = belonging to X. Alright, why this is true?



You have to do some topology here. On a compact metric space, the distance between = and f(z)
is a continuous function, ok? A real valued continuous function, positive. So, it attains its
minimum and that means that minimum will be strictly positive. Take that positive number to be

epsilon. Then everything else will be bigger than that. ok?

Now, I will fix a finite simplicial structure on X, I do not care what it actually is but that it is a
finite triangulation on X. Now, X is nothing but | K|, Ok? Next I can choose a subdivion K’ of
K, (by repeating barycetric subdivsion as many times as required, for instance) so that the mesh
of K’ which is the by definition, maximum of the diameters of all the simplexes, is less than
epsilon by 3. Ok. We have done this in part I. All that you have to do is to keep taking
barycentric subdivisions. Each time the diameter becomes r times original one where r» < 1. So,
if you repeat it several times then it will be less than given number. Ok
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Replacing K’ by K, we can as well assume that mesk of K itself is less than ¢/3. Now by
simplicial approximation theorem applied to the continuous function f from |K|to | K|, we get a
integer k£ and a simplicial map ¢ from sdk(K ) to K to the function f. That means, in particular
that |¢| is homotopic to f. Therefore, L(|¢|) is the same thing as L(f). You want to show that a
L(f)is 0. We can do that by showing that L(|¢|) is 0. Ok? So, that is what we are trying to do

now. How do we how do we use this information all this information? Why all this was done?



So, the first thing we claim is the following. Take p to be any simplex of L := sdk(K ). Then
there is a o belonging to K such that |p|is contained inside |o| That is a property of subdivisions.
The claim is that |¢|(|p|) N |o| is empty. For this we have to use the facts that ¢ is a simplicial
approximation to f, f has no fixed point, € is chosen in a particular way and then the simplicial
complex is chosen in a particular way viz, mesh of K is smaller than €/3, etc. Since p was inside
sigma, where as points of p will be carried away from o. This is a strong claim that we want to

prove now. ok?

Suppose this is not true, that could mean that there is a point = in the intersection. That means x
in |p| and such that |¢|(z) belongs to |o|. Ok? Then both z and |¢|(z) will be inside |o|. Now the
diameter of |o| is less than €/3. Therefore distance between x and |¢|(z) will be less than /3. On
the other hand ¢ is a simplicial approximation to f. So, f(z) is |¢|(x) will be the same same
simplex of K. Since the mesk of K is less than €/3, it follows that distance between f(x) and
|| (z) is less than /3. By triangle inequality it follows that the distance between x and f(z) will
be less than 2¢/3 which is a contradiction to the choice of €, being the minimum of such
distances. In particular, it follows that the simplicial map ¢ has the property that p and ¢(p) are
disjoint for every simplex p in sd” (K).
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Now the only problem is that when you take the simplicial approximation, you have taken a

subdivision of K and then the domain compelx and codomain are different. Thus the chain



complexes of the domain and the codomain are different. So, there is no concept of trace of a
morphism. Trace is defined only for an endomorphism of the module to itself and not for an
arbitrary homomorphism. So, that is the difficulty here and it has to be overcome somehow and
there are different methods of doing that. So, I will give you twp methods here which I like,
some other methods I do not like and I even doubt them.

(Refer Slide Time: 21:10)

[ =

Methed |

Wir £an wee the DW-chan comples assacipbed with K, Since o & 3
swmphcal map L -5 K. it follows that | & & cellular map of the
Clcomiples K. Lot o, - BB KNy o b (i gt e
the Bamamorphism wduced by |of, IF + £ K 1 an anented
n-simples. it followes from (30), that [4(]=[371 (=] = i, Thensfore
the codfliciont of v in og (7] will e T, (3 Sollows That the trace
of the matns ropresenting oy Is 2ero. Therefore Lija)} = 0.

e Samri e e o T e M S R it
0000000000
So, in the first method I use the CW-structure on X associated with the simplicial complex K on
both domain and codomain. Then it follows that |¢| from X to X is a cellular map. Any k-cell
will be mapped into the union of k-cells by |¢| since it is simplicial from sd*(K)to K. Therefore

we can now pass of the morphism induced by |¢|on CSW (X) = H,, (K™, K(n~1),

Let this map be denotes by «,, from H,, (K ()K" o tsellf, So, I have the domain and
codomain are same here. If an n-simplex 7 is a generator, (this is the meaning of oriented n-
simplex, ok), it follows from the above property of |¢|that 7 N |¢|(7) is empty, right? That o, (7)
is a finite sum of certain oriented n-simplexes the support of none of which will intersect || But

this will means that coefficient of 7 in the Z an (1) =0,

It follows that if you write down the matrix for «,, using the set of n-simplexes in K as the basis,

the diagonal entries of this matrix will be all 0. That means the trace of a, is 0. Therefore trace of



oy, 18 0. This is true for all n right? Therefore, the alternating sums will be also 0. That means
L(]|¢|) = 0. That is what we wanted to prove.
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The second method is slightly more elaborate, but it teaches you something about the
subdivision chain map also. So, how to use subdivision map? Ok. The property of sibdivision
chaoin map, whatever, we are going to use here, will be useful elsewhere also. So, here take the
subdivision chain map Sd, which you have defined from C.(K) to C.(sd(K)). Little sd is the

barycentric subdivision, whereas Sd is the subdivision chain map. Ok.

We have seen that this Sd induces identity homomorphism in the homology. That is the beauty.
You can forget about this C. and go to H,(|K|) to H,.(|K]), it is identity morphism there. By
repeated application of this, take compositions of Sd with itself k times, it follows that Sd* from

C.(K)to C.(sd*(K)) induces the identity map on the homology.

So, I can compose it with |¢[, from H.(|sd"(K)|) to H,(K) to get an endomorphism of
C.(Sd*(K)) to C.(Sd*(K)), viz., Sd* o ¢.. When you pass on to homology, it follows that the
induced morphism is the same as |¢|,. Therefore, L(|¢|) = L(Sd* o ¢) which can be computed

at the chain complex level.
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Taking the n-simplexes of Sd*(K) as a basis, consider the matrix associated to A = (Sd* o ¢),
at the n-chain group. Property (35) here will tell you that if you write the expression for A(p) for
any simplex p in Sd" (K)), it will not consist of p at all. That argument is the same as in the earlier
case, ok? Hence the matrix of A will have all diagonal entries 0, so that its trace is 0. Alternate
sum of these traces will be also 0.
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Module-40 Applications of LFT

So I think I will have stop here. We shall see some interesting applications of the Lefschetz fixed

point theorem itself next time. Thank you.



