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So, today we shall take care of few side remarks and certain left out things and so on. So, this is

not exactly a topic module, so I have called it assorted topics. To carry on with whatever we

were doing, namely, the study of lens spaces. Let me first give you a few more information on

lens spaces. So far, we considered only finite dimensional lens spaces, namely, finite quotients of

odd dimensional sphere. We made a group action and then take the quotient. Right?

We can do this in a little more general fashion, namely,  Each time the action that you take on a

lower dimensional  sphere extended to a higher dimensional  sphere using the containment  

contained in  containend in  and so on. We have been extending the action. Therefore you

can do this all the way to infinite dimensional sphere as well. Ok?

So, what  the starting data?  Instead of a  finite  sequence   of  numbers  which are

coprime to  a  given number  ,  we start  with  an  infinite  sequence  of  numbers  which are  all



coprime to . Ok? Then all that you have to do is take this infinite sequence of complex numbers

such that after a finite stage they are all , that is the meaning of this one  etc, sitting

inside  thought of as the unit sphere in  which is nothing but the direct sum of countably

infinite copies of . Take  to be a primitive -th root of unity and send 

to   i.e., the  -th coordinate by   and multiply the  -th coordinate by  

Verification that, this defines a fixed point free action of   on  is actually done earlier,

because though the sequences are infinite, each time you have to handle only finitely many non

zero entries. What you have do? At each time you have to verify it at the finite level.

It follows that the quotient map is a -fold covering from  to the orbit space, which we denote

by . So, that is called an infinite dimensional lens space. 
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It has some theoretical importance. I will let you know about it a little later. Right now, coming

back to the finite dimensional lens spaces, there are some easy observations you can make. ,

remember, as such depends upon both  and , right? Indeed,  is congruent to  modulo  then

 and  are the same spaces. This allows us to take  to be negative integers also. 

But there are some more interesting relations, namely,  is diffeomorphic . How to see

this? There are many different ways of seeing. I am telling you one way. Consider the map 

from  to  given by  going to , where  is some integer. Clearly, it is a smooth



map and its inverse is given by  going to , ok? Anyway it is a homeomorphism

if you do not know what a diffeomorphism is. Now for a special  , namely.  , you can

verify that   actually becomes an equivariant map from  to   with respect to the two given

actions of   on , viz.,   is equal to  . it is sensing a   of of  . Therefore f

factors down to define a map  from  to , ok? 

 under   would go to  . Applying  now gives you . There is

some typo here in the slide, you better change it. On the other hand , under  will first go

to  and then under , it goes to  The end results are the same. 
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The second thing is that if  and  are such that one is the inverse of the other modulo , i.e, in

the  ring  ,  these  two numbers  must  be  inverses  of  each  other,  viz,   is  congruent  to

, ok? then again  is homeomorphic (diffeomorphic) to . So, to see this you look

at the map which interchanges the two factors viz.,  That is a diffeomorphism

of  to . 

We  can  easily  verify  that   is  the  same  thing  as   i.e.,   operated   times

repeatedly. But that is the same as if we choose the primitive root  for our  action. Note that

the action is independent of what primitive root of unity you choose, because if  and  are two

primitive roots then multiplication by  defines an equivariant map from one -action to -



action. Ok? The assumption that both  and  are coprime to  is important here. Hence  is

homeomorphic to .

If you combine these two observations, you will get  is also homeomorphic to , ok? The

first  number  is  the  same,  the  second  number   can  be  replaced  by  its  additive  inverse,  or

multiplicative inverse or its negative, the diffeomorphic type of  does not change. Ok?
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What Reidemeister has done is to prove the converse and thus giving complete classification of 

-dimensional lens spaces, very classical result, viz.,  is homeomorphic to ,  if and only

iff  is , or  is . Ok?

The `only if' part viz., the converse part is beyond the scope of this course, which requires us to

introduce new concepts such as Reidemeister torsions and so on, a deeper theory. Ok. 
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Similarly there is a theorem of Whitehead which gives you a homotopy classification. So let me

state that one. In any case all these things available in a nice article by Cohen written in 1073.

So, if you are interested in you can read that article. 

So, Whitehead's  theorem:   is  homotopy equivalent  to   if and only if   is  a square

modulo , ok? So, homotopy equivalence automatically takes care of homeomorphisms also, but

it is a much larger class. So this is Whitehead’s result. Ok.
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So, now, I will let you know something about infinite dimensional lens spaces. The strangeness

with infinite lens space is that its homotopy type depends only on the first integer . All of them



have their fundamental group is isomorphic to  . Thus   is a  -fold cover of the Lens

space as in the finite case. But what is important here is that   is contractible, unlike finite

dimensional sphere. From this fact one can deduce that if  are any two infinite sequences of

numbers all of them coprime to , then  and  have the same homotpy type. This follows

from  a  general  fact  that  Eilenberg-Maclane  spaces  of  type  a  given  type  are  unique  up  to

homotopy type. Now let us go to another topic here namely, Euler characteristic revisited.
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Remember,  in  part  I,  wedefined Euler  characteristic  of  a  finite  simplicial  complex.  A finite

simplicial complex   has a finite sequence  , where   is  the number of  -

dimensional  simplexes  in  .  This  ordered  -tuple  is  called  the  face  vector  in

combinatorics. What we are interested in here is that the Euler characteristic of  is defined as

the alternate sum of 's for a finite simplicial complex . 

For the simplicial chain complex  which is finitely generated, we have another definition

of the Euler Characteristic, , namely the alternate sum of the ranks of these . We

have seen that this is also equal to the alternate sum of the ranks of the corresponding homology

groups. Ok? 

From our study of the simplicial chain complex of a simplicial complex , we know what the

groups . They are the free abelian groups with basis consisting of -dimensional simplexes



and therefore, they are of rank . Therefore, these two definitions are the same, whether you use

the simplicial chain complex to define the Euler characteristic or directly do the way we have

done it in part I. Ok? So, that is an important observation.
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But then we have  also stated  that  the simplicial  homology is  canonically  isomorphic to  the

singular  homology  of  the  underlying  topological  space.  From this  it  follows  that  the  Euler

characteristic is independent of what triangulation you choose on the given topological space,

provided it is defined. 

To define the Euler characteristic for topological spaces directly, of course, there will be some

restrictions. Ok? For instance, anytime  has finite simplicial complex structure this will valid.

For example, if you start with a compact space which can be triangulated, then all simplicial

structures on  will be automatically finite and they all yield the same Euler-characteristic. 
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By the way, Euler characteristic at least for surfaces, were studied even before Poincare. The

rank of  is itself an important homotipy invariant of a space. It is classically denoted by

, whether it is finite or infinite, and it is called -th Betti number of . The alternate sum of

-th Betti numbers, if it is defined (i.e. all of them finite and most of them  ) is called Euler

characteristic in the most general case.  If these things are all finite, then you call it as . To

compute this one usually used a suitable triangulation. 

We can go one more step ahead because now we know what is a CW complex instead of a

simplicial complex, and what is the CW-homology. 

(Refer Slide Time: 20:53)



Exactly as in the case of simplcial complexes we can define a face vector and compute the Euler-

characteristic directly. So, this is valid for all finite CW complexes which is a slightly larger cat-

egory than finite simplicial complexes. All these comments apply to the Lefschetz number also.

Recall what is the Lefschetz number of a continuous function  from one topological space  

into itself. 

Now suppose   is a space such that its homology  is finitely generated. Then take the

induced homomorphisms  from  to . Look at the trace of each of them.(These are

-linear maps you can talk about the trace.) Take the alternate sum. That is the definition of

Lefschetz number  . ok? So, this can be computed either using the CW structure or using

simplicial structure for , provided that the map  is cellular or simplicial respectively. 

But final result says that it is independent of all that. It can defined for any map from any  to 

provided  has finitely degenerated homology. Ok?
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Here is another kind of homology: cellular singular homology. We now come to this version of

homology which is between CW homology and singular homology of the underlying space. Ok?

This  is  similar  to  the  case  of  simplicial  homology  and  singular  simplicial  homology  of  a

simplicial complex. Ok?
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So, take a CW complex . I am going to define a subgroup of  What is this subgroup? I

am using the notation  for the free abelian group generated by the set of all continuous

maps sigma from   to  ,  which  are  cellular.  Here,   are  taken with their  standard cell

structure. If you take all continuous maps as the generating set,  you get the whole group ,

ok? So, obviously this free abelian group is a subgroup of  and the boundary operator in

 takes  into , because boundary of a cellular map is a cellular chain. That

is why you can take the restriction of the boundary operator to make  into a subchain

complex. 

Now look ? It is defined as a free abelian group on the set of characteristic maps of -cells.

Since the domain of each characteristic map phi of an -cell can be taken to be  and then  

becomes automatically cellular, it follows that it is a subsets of the basis for . Therefore

 is a subchain complex of . Ok? 
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Now the statement is that the inclusion map  to  is chain equivalence, Ok? Therefore

when you pass to the homology, it will be induce an isomorphism. Ok? 
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As usual we will postpone the proof of this one. Ok?
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Also, you can always take relative versions of these things for CW pairs. We are not going to use

this one so much here but understanding this one will be a must when you want to to study

certain concepts in higher algebraic topology, such as Serre-spectral sequence etc. The idea of

spectral sequence actually has roots in this kind of observations with CW complexes Ok? So, let

us stop here and next time we will start doing applications of homology, thank you.


