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Module-38 Assarted Topics

[A) Seme Camments an Lens Spaces We have 5o faf condidered

finste dimensional lens spaces. Even more generally, we can define
tha infinite dimensional Jens spaces a5 follws. Given an infinite
SIEUENCE gy, ) of numbers coprime ta 3, define an action of

Ly on the infinite dimensional sphere 5™ by treating it as space of
unil vectors in the vedtor space L

(Gl ) = (G2 (o)

The verification that the action is fixed point free is the same in th
finite dimensional case and we oblain o p-fold eovering prajection

Y= Upoay g

These are calied infinite lans spacey

So, today we shall take care of few side remarks and certain left out things and so on. So, this is
not exactly a topic module, so I have called it assorted topics. To carry on with whatever we
were doing, namely, the study of lens spaces. Let me first give you a few more information on
lens spaces. So far, we considered only finite dimensional lens spaces, namely, finite quotients of

odd dimensional sphere. We made a group action and then take the quotient. Right?

We can do this in a little more general fashion, namely, Each time the action that you take on a
lower dimensional sphere extended to a higher dimensional sphere using the containment S3
contained in S® containend in S” and so on. We have been extending the action. Therefore you

can do this all the way to infinite dimensional sphere as well. Ok?

So, what the starting data? Instead of a finite sequence ¢i,qo,...,q, of numbers which are

coprime to a given number p, we start with an infinite sequence of numbers which are all



coprime to p. Ok? Then all that you have to do is take this infinite sequence of complex numbers
such that after a finite stage they are all 0, that is the meaning of this one zg, z1, . . ., 2, etc, sitting
inside S°° thought of as the unit sphere in C* which is nothing but the direct sum of countably
infinite copies of C. Take ( to be a primitive p-th root of unity and send ((, (20, 21, - 2n,---)
to (Czo,(? 2z1,(%29,...) i.e., the O-th coordinate by ¢ and multiply the i-th coordinate by ¢%.
Verification that, this defines a fixed point free action of Z/pZ on S is actually done earlier,
because though the sequences are infinite, each time you have to handle only finitely many non

zero entries. What you have do? At each time you have to verify it at the finite level.

It follows that the quotient map is a p-fold covering from S°° to the orbit space, which we denote
by L := Ly 4, qs,... S0, that is called an infinite dimensional lens space.
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Some Observations

{a) |'.I'p.q:l 4 hammeamorphic 1o |'.[||.'l. q) Ta sse this, candider the

hamwomarphism b 5 piven by flao. 2] = (& 2la) for
same integer ¢, Chodsing t = -2, we soe that o, = o of
(20 2) = (a0 ) = (20, (' )
lagoay) = (a5 3} {Cay, (2 )

Thik shows that § s an equivariaint homeomarphism of the two
actiomd. |heretore it induces 3 homeomorphism of the two
reRpEClive quoteent Spacos,

()

s i i 0 P D o Wt BRI RS S RIS
-
It has some theoretical importance. I will let you know about it a little later. Right now, coming
back to the finite dimensional lens spaces, there are some easy observations you can make. L, 4,

remember, as such depends upon both p and ¢, right? Indeed, ¢ is congruent to ¢’ modulo p then

L, qand L, . are the same spaces. This allows us to take g to be negative integers also.

But there are some more interesting relations, namely, L, 4 is diffeomorphic L, _, How to see
this? There are many different ways of seeing. I am telling you one way. Consider the map f

from S? to S given by (20, z1) going to (20, 2521), where t is some integer. Clearly, it is a smooth



map and its inverse is given by (2o, 21 ) going to (20, zo ' 21), ok? Anyway it is a homeomorphism
if you do not know what a diffeomorphism is. Now for a special ¢, namely. ¢ = —2¢q, you can
verify that f actually becomes an equivariant map from S* to S® with respect to the two given
actions of Z/pZ on S?, viz., f o ¢q 1s equal to ¢_4 o f. it is sensing a ¢_, of of f. Therefore f

factors down to define a map f from L, 4 to Lp, —q, ok?

(20, 21) under ¢, would go to (Czq,(%%1). Applying f now gives you (Czp, ¢ 29¢%;). There is
some typo here in the slide, you better change it. On the other hand (2o, 21), under f will first go
to (20, ¢ 2721) and then under @, it goes to (Czo, (?¢~272;). The end results are the same.
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() Similarty, for ag’ = 1p), consider Tz, 2) = (21, &) Verily

thiat
Togg={oWaT

q

This means T s an equivariant diffecmenshism of the o-action to
o-action, which is equivalent 1o ¢y, with the choice of the
grimitive raat being (7. Hence L(p, q) s homeamdrphic to

Lp g'). Cambining with {a), it follows L(p. -5) malso
hameomarphic to Lp, g)

i)
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The second thing is that if ¢ and ¢’ are such that one is the inverse of the other modulo p, i.e, in
the ring Z/pZ, these two numbers must be inverses of each other, viz, q¢’ is congruent to
1 mod(p), ok? then again L,, , is homeomorphic (diffeomorphic) to L,, .. So, to see this you look

at the map which interchanges the two factors viz., T'(zg, 21) = (z120). That is a diffeomorphism

of S® to S°.

We can easily verify that T'o ¢, is the same thing as (gbq)q' oT ie., ¢, operated ¢' times
repeatedly. But that is the same as if we choose the primitive root ¢ 7 for our ¢4 action. Note that
the action is independent of what primitive root of unity you choose, because if ¢ and ¢’ are two

primitive roots then multiplication by ¢’¢ ! defines an equivariant map from one C-action to ('



action. Ok? The assumption that both ¢ and ¢’ are coprime to p is important here. Hence L, 4 is

homeomorphic to Ly, 4.
If you combine these two observations, you will get L, _ 4 is also homeomorphic to Lyq, ok? The
first number is the same, the second number g can be replaced by its additive inverse, or
multiplicative inverse or its negative, the diffeomorphic type of L, , does not change. Ok?
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It ts a classical result die to Reidemerster that the converse is also

trug

(Raidemeister) L{p, o) fs homeamarphic to Lp. ') ifg £ ¢ =0

o g =41 madila p ¥

P seen above, combining (a) and (b)), we get the prool of the 'if
patt. The praaf of the ‘anby i part and it generalization are
teyond the scope ol the expauition,

&)
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What Reidemeister has done is to prove the converse and thus giving complete classification of 3

-dimensional lens spaces, very classical result, viz., L, , is homeomorphic to L, ,, if and only

iff ¢ £ ¢’ is 0 modp, or q¢’ is =1 modp. Ok?

The “only if' part viz., the converse part is beyond the scope of this course, which requires us to
introduce new concepts such as Reidemeister torsions and so on, a deeper theory. Ok.
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Alse, the following thearem of Whitehead, which, we state here

withoit proaf, completely answers the homatopy clasification of
the J-dimensional lens spaces. An interested render may refes o
[Cohen, 1973}

(Whitehead) Lip. ) is hamatopy equivalent to L, ') iF gy’ =4
sgitare madulo p

k
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Similarly there is a theorem of Whitehead which gives you a homotopy classification. So let me

state that one. In any case all these things available in a nice article by Cohen written in 1073.

So, if you are interested in you can read that article.

So, Whitehead's theorem: L, , is homotopy equivalent to L, o if and only if g¢’ is a square
modulo p, ok? So, homotopy equivalence automatically takes care of homeomorphisms also, but
it is a much larger class. So this is Whitehead’s result. Ok.
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[Cohen, 1973]
(Wihitahead) L{p. q) & homotopy equivalent ta Lip.q') i gq & a
square modulo p
(B) Euler characteristic revisited
(=) Recall that i Part-l, we have defined

So, now, I will let you know something about infinite dimensional lens spaces. The strangeness

with infinite lens space is that its homotopy type depends only on the first integer p. All of them



have their fundamental group is isomorphic to Z/pZ. Thus S is a p-fold cover of the Lens
space as in the finite case. But what is important here is that S° is contractible, unlike finite
dimensional sphere. From this fact one can deduce that if s, s’ are any two infinite sequences of
numbers all of them coprime to p, then L, ; and L, s have the same homotpy type. This follows
from a general fact that Eilenberg-Maclane spaces of type a given type are unique up to
homotopy type. Now let us go to another topic here namely, Euler characteristic revisited.
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Rermark 4,10

Recall that in Part-, we have defined
y[K) =T, (1) AlK)

a& the Euler characteristic of a finite simiplicaal eampkex K, For the
simplicial ehain complex C (K, we have another definition of

dC (K]} in 3.9 Since each K is a free abelian group over the
sot-of i-simplices of K, it immediately foflows that

(K} 1|'t'r,h']j:
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Remember, in part I, wedefined Euler characteristic of a finite simplicial complex. A finite
simplicial complex K has a finite sequence (fo, f1, f2,.--, fn), Where f; is the number of -
dimensional simplexes in K. This ordered (n+ 1)-tuple is called the face vector in
combinatorics. What we are interested in here is that the Euler characteristic of K is defined as

the alternate sum of f's for a finite simplicial complex K.

For the simplicial chain complex C.(K') which is finitely generated, we have another definition
of the Euler Characteristic, x(C(K)), namely the alternate sum of the ranks of these C),(K). We
have seen that this is also equal to the alternate sum of the ranks of the corresponding homology

groups. Ok?

From our study of the simplicial chain complex of a simplicial complex K, we know what the

groups C;(K). They are the free abelian groups with basis consisting of i-dimensional simplexes



and therefore, they are of rank f;. Therefore, these two definitions are the same, whether you use
the simplicial chain complex to define the Euler characteristic or directly do the way we have
done it in part I. Ok? So, that is an important observation.
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Sinee we hawe also proved that yICIK]) = y(H(C(K]) and since

HAC(K)) s canonically isomarphic fo H,(| K1), we conclude that
the Euler ehasacterstic of K 18 a topalagieal invaria

0
But then we have also stated that the simplicial homology is canonically isomorphic to the
singular homology of the underlying topological space. From this it follows that the Euler
characteristic is independent of what triangulation you choose on the given topological space,

provided it is defined.

To define the Euler characteristic for topological spaces directly, of course, there will be some
restrictions. Ok? For instance, anytime X has finite simplicial complex structure this will valid.
For example, if you start with a compact space which can be triangulated, then all simplicial
structures on X will be automatically finite and they all yield the same Euler-characteristic.
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Indeed, for any topological space X wath finitely generated singular

harmodogy, we deling
:le:l '|L||n”,|.|(,,",]
and call it the " Bettl numlber of X, We then defing

§%) = x(A(XD = Y1)

Becaust of the topalagical invariance of the homalogy groups,
Betti numbers can be computed wing any triangulation of a space
and the correspending simpliclal hamology, provided, of course
that X 18 triangulable b
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By the way, Euler characteristic at least for surfaces, were studied even before Poincare. The
rank of H;(X) is itself an important homotipy invariant of a space. It is classically denoted by
B;(X), whether it is finite or infinite, and it is called i-th Betti number of X. The alternate sum of
i-th Betti numbers, if it is defined (i.e. all of them finite and most of them 0) is called Euler
characteristic in the most general case. If these things are all finite, then you call it as x(X). To

compute this one usually used a suitable triangulation.

We can go one more step ahead because now we know what is a CW complex instead of a
simplicial complex, and what is the CW-homology.

(Refer Slide Time: 20:53)

The same remarks apply to a hnite CW complex X as well This
time we cai st the CE¥(X), It fallows thae 4,(X) equal to the
number of i-cells in X and

W) = (-1 X

as before. Thus the result is applicable for all finite CW compleces
as well
Moreover, these comments apply to Leficher number a5 well
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Exactly as in the case of simplcial complexes we can define a face vector and compute the Euler-
characteristic directly. So, this is valid for all finite CW complexes which is a slightly larger cat-
egory than finite simplicial complexes. All these comments apply to the Lefschetz number also.
Recall what is the Lefschetz number of a continuous function f from one topological space X

into itself.

Now suppose X is a space such that its homology H.(X) is finitely generated. Then take the
induced homomorphisms f, from H;(X)to H;(X). Look at the trace of each of them.(These are
Z-linear maps you can talk about the trace.) Take the alternate sum. That is the definition of
Lefschetz number L(f). ok? So, this can be computed either using the CW structure or using

simplicial structure for X, provided that the map f is cellular or simplicial respectively.

But final result says that it is independent of all that. It can defined for any map from any X to X
provided X has finitely degenerated homology. Ok?
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{€) Cellular Singular Homomolgy
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Finally, we now come o yet ancther homology for CWecomplewes

which lies “betwoen’ CW-homology and singular homolagy and
which we call cellular singular homalogy, The case i similar to the
simphaal homalogy and singular smphcal hemology of a smplicial
emiles

e T
Here is another kind of homology: cellular singular homology. We now come to this version of
homology which is between CW homology and singular homology of the underlying space. Ok?
This is similar to the case of simplicial homology and singular simplicial homology of a

simplicial complex. Ok?
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Difinitian 4 6

Let X be o CW-comples, Let i.-lf'”I:)f] bie the free abehan group
generated by the set of all centindous maps @+ &, — X which are
cellutar, in the standoed cell structure of A, Chearly, thes Terms a
subigroup of 550X ) and one can easily wnfy that --':_f,‘,"*_l i s
I other wards, C™(X) = 10, " (X) formy & subchain complos
of 5(X)

5
So, take a CW complex X. I am going to define a subgroup of S, (X ). What is this subgroup? I
am using the notation Cge” (X) for the free abelian group generated by the set of all continuous
maps sigma from A,, to X, which are cellular. Here, A,, are taken with their standard cell
structure. If you take all continuous maps as the generating set, you get the whole group S,,(X),
ok? So, obviously this free abelian group is a subgroup of S,,(X) and the boundary operator in
S.(X) takes C?(X) into C<°Y (X)), because boundary of a cellular map is a cellular chain. That

is why you can take the restriction of the boundary operator to make C,Ce”(X ) into a subchain

complex.

Now look Cg W9 It is defined as a free abelian group on the set of characteristic maps of n-cells.
Since the domain of each characteristic map phi of an n-cell can be taken to be A,, and then ¢
becomes automatically cellular, it follows that it is a subsets of the basis for Cff”(X ). Therefore
CSW (X) s a subchain complex of C<“'(X). Ok?
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The intlusion mag E:""'[X:I = 5(X1 & a chain eqivalence,

There are similar definitions and statements for relative CW
complexes alsa

)

Now the statement is that the inclusion map O to ¢! is chain equivalence, Ok? Therefore
when you pass to the homology, it will be induce an isomorphism. Ok?
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The inclusion map C™'(X) € §(X) & a chaln sqivalence.

There are similar definktions and statements for relative O\
complexed i1k
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As usual we will postpone the proof of this one. Ok?

(Refer Slide Time: 26:40)



We shall pestpone the proof of this theorem ta the end of the
chapter. However, notice that the CW-chain complex itself can be
thought of as a subcomplix of this comples via the charactensis
mas

EWX) = £7x) e 5(X)

Mareaver, by the naturality, it easily extends to the case of relative
CW.compheits as well. This theorem will be of theoretical
importance though not used in this course, For example, (7 s used
in the construction of Leray=Serre spectral sequence
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Also, you can always take relative versions of these things for CW pairs. We are not going to use
this one so much here but understanding this one will be a must when you want to to study
certain concepts in higher algebraic topology, such as Serre-spectral sequence etc. The idea of
spectral sequence actually has roots in this kind of observations with CW complexes Ok? So, let

us stop here and next time we will start doing applications of homology, thank you.



