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Last  time  we  introduced  the  notion  of  relative  CW complexes  and  CW complexes  and

checked a lot of examples, the standard examples, such as spheres, discs, and then later on

projective spaces, both real and complex. We would like to study many more examples. So,

in following two more modules which are denoted by module 4A and 4B we will only study

more and  more examples,  okay?  For  example,   itself  you know can be given  several

different CW-structures each of them can be used in different contexts. 

One such thing is thinking  as the underlying space mod , where  is a -simplex in

.  Remember  the  -simplex  in   is  convex  hull  of  the  standard  basic  elements

.  The  endpoints  of  these  vectors  will  be  taken  as  the  vertices,  okay?

Inductively having defined the -skeleton , we take the set of all -faces of  as

the set of -cells in  with the inclusion map as attaching maps. 

The point is we are not building up the space here but that a space is already there and we are

decomposing the space in to CW-complex, into a disjoint union of open cells.  -cells, they

are open simultaneously open as well closed cells, then -cells, with their boundaries inside of



the union of all  -cells, the -skeleton, then the -cells their boundaries inside the -skeleton

and so on. Okay? So, this phenomenon, we will keep observing. 

So,  this  happens  to  be  a  very  special  case,  namely,  of  simplicial  complexes.  For  any

simplicial complex there is an associated CW-complex. The simplicial complex itself can be

thought of as a CW-complex, namely, the -skeleton is the set of all vertices of the simplicial

complex then, the one simplexes become -cells, etc. Only you are changing the terminology

here that is all. Attaching maps are what? Attaching maps as well as the characteristic maps

are the inclusion maps. Okay.
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So,  this  is  what  we  get.  Take  any  triangulated  space,  say   is  a  triangulated  space.

Automatically, it acquires CW-structure. Okay? So, here all the characteristic maps are just

the inclusion maps because we have already built up the space we don't have to build a space

here. The inclusion maps happened to be injective, homeomorphisms onto their image, you

may say embeddings. These are very special kind of CW-complexes okay? 
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Before considering the next set of examples, let us make a few more definitions so that we

will become familiar with the definitions also. A CW-complex  is said to be locally finite, if

for each closed cell   (closed cell is just the closure of a cell), the number of closed cells

intersecting  in , that must be finite, Okay? 

This condition implies quite a bit. For example, take a vertex, look at all -cells, which may

intersect that vertex, okay,  they must be finite many. Not only that, all -cells, -cells and so

on in  , the codomains of whose attaching maps contain that point must be finitely many.

Okay? So, this should happen for every closed cell okay, the closure of a cell should intersect

only finite many other cells.

Here is a more general definition. Let  be topological space and  be a collection of subsets

of . We say  is locally finite on , if for each , there is an open set  in  which

will contain the point  and which would intersect only finitely many members of . Okay?

So, for each  , there is a neighbourhood   of   which will intersect  only finitely many

members of . Okay? 
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Let  be any topological space with two different CW structures on it.  I will denote them by

 and , just temporary notation just to distinguish between the two of them. We say

 is finer than  if each closed cell in  is a subcomplex of . A subcomplex

may have different structure than the just being a cell. Okay? If you take a closed cell along

with all its faces then only it will become a sub complex in . That is the definition 

is finer than . So, if you have each closed cell in  is a subcomplex of , okay? 

For example, this will imply that all -cells of  must be -cells in  also, there is no

other way that a -cell will be a subcomplex. So, all the -cells must be contained inside the 

-skeleton of . 

But for  positive, there is no such simple relation between the -cells in  and -cells in

, except that if you take the totality of all -cells for  of , that means the -

skeleton of   must be contained inside  -skeleton of   just as a topological space

okay. So, this is the consequence of this definition, viz., one is finer than the other okay. So,

you can think about these definitions. Think about some typical and easy examples and so on

okay? 
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So, let us now take a more general example first and then just add a typical example. Take a

simplicial complex  and a subdivision  of . We may consider them as CW complexes

on the same underlying space   because  . Now check that   is finer than ,

okay. So, to figure out this, it will require that you know simplicial complexes and subdivsion

well. okay? So, but that is what I am assuming in this course anyway. Indeed, the above

definition is modelled on this example. Instead of calling  a subdivision of  which

will  be  too  much I  am calling  it  a  finer  CW-structure,  okay.  So,  just  extracting  certain

properties of subdivision to call this as something is finer than that so that we can compare

the two of them okay. 
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So, here is a lemma which will ensure how to patch up two different CW structures, on the

union of two CW complexes. Suppose  is the union of two topological subspaces  and ,



both of them are closed subsets of  and have CW structures on them okay? Out of this data,

we want to have a CW structure on . In order to achieve this,  we have to assume one more

condition.  Suppose  that  on  the  intersection  ,  the  two  CW  structures  obtained  as

subcomplexes from  and  respectively, are such that one of them is finer than the other. 

Note  that  on  ,  there  are  two  structures  which  are  subcomplexes  of   and  

respectively, you may call this one  and other one , and one of them should be finer than

the other. So, this is the condition I am assuming on the intersection. Then, there is a CW

structure on  whose closed cells are those of  or . You do not have to do any more work

to get , all those cells needed are in  or in  (or both). 

So, this I am putting it as an assignment just because I want you to participate in this. So, that

if you start thinking and working on them,  these things will become more familiar to you.

Okay? 

So, in this lemma, I have already used the definition that I have made here okay. So, while

proving that lemma you will automatically become more familiar with the definition. Okay? 
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Now, I come to a class of structures, which are very nice CW-structures, which fall short of

being a simplicial complex is just a little bit okay. So, here are those examples they are very

close to being a simplicial complex, except that, instead of being built up of triangles and

tetrahedrons and so on, we use squares and cubes, cubes of higher and higher dimensions and

so on. Only in  dimension and  dimension, the simplicial as well as cells coincide. Okay. So



all these -cubes are inside , everything is happening inside , -cubes with their sides

parallel to the coordinate planes. Okay? So these things will be very useful in analysis all the

time. You cut   into smaller and smaller subdivisions. And that is precisely what we are

going to do here and then put them to produce CW-complexes. 
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So, I will start with these subdivisions, namely, what are called lattice points. Fixing integer

 and I am working in . In the notations below, sometimes I am writing that  but

whenever there is confusion I may not write it. Now for each non negative integer  , I am

writing   or just  . This is the notation for the set of all  points   in   all  of whose

coordinates look like some integer ; this  is fixed here. 

So, the same  should come here; . Okay? The numerator is an integer denominator is ,

Okay? For example, it may be , which means denominator is . So, the integer coordinates

are now allowed, then the denominator could be  , etc. Next, for example something like

 is same thing as  all those points are allowed here okay. So, those are the

coordinates of these points .

Let now  denotes the set of all closed -dimensional cubes. So, generally I am denoting

them by . All -cells have side length . Remember that  is fixed here, each cube  has

its corners of inside the lattice , okay? So, that is : 



Take all the  for all , the union will be denoted by . This is just a notation again. and

again  we will  have  to  use this  notation I  am setting it  up that  is  all,  what  you want  to

remember is that  consists of only points with coordinates and coordinates are like this, this

is what we call lattice.

Note that  each   is  contained is   contained   and so on. okay? However,  for  

between   and  , if   is an  -dimensional face of one of one cubes (you know face means

what? You take a square, the square has all the sides and vertices as its faces, a -cube has -

faces that are  in number, -faces that are  in number and -faces that  in number.) An -

dimensional face of a member of , start with , take any face of dimension between  and

. 

It will not be a face of any other member of , where . Because  just means that

its size, the side length, volume etc, will differ by multiplication factor of some  power of .

Only in case of vertices,  by subdivisions,  more and more vertices will come and the old

vertices still remain there. for example the origin  is in  for all  . Similarly

vertices with integer coordinates are there in are in all of them, That is what you have to

remember. Okay? 
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An important property of  worth noticing and remembering is the following. Take two cells

 and  , two  -cubes. I am taking then in  , that means their sizes could be different,



okay? Then the interior of  intersection interior of  is non empty would imply one of them

is contained entirely in the other. This is what I am saying. 

So, first of all, if both of them are in   for the same , then of course it is easy to see the

interiors of  and  are disjoint, Okay? So, this case does not occur. So the intersection is

non empty means that  and  are in  and  for . Say  and  or  and so

on. Then it  can happen only this way it can happen okay? The intersection is non-empty

would imply  contains  or  contains , okay? 
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Now, following lemmas is easy to see. Each  (here  is fixed)  along with its -cells and all

the faces of these  -cells defines a CW-structure on   which is pure and locally finite.

Okay? 

The local finiteness is obvious because around a point in  in inside , how many edges

you will have? How many edges will be incident? How many squares will be incident there?

You just think about that. The same picture at every other point. These numbers just depend

upon  only and not . For instance, the number of edges will be 

To see the CW decomposition all that we have to use is the fact that interiors of all the -cells

are disjoint and they cover the entire . First of all, the -cells you know, their interiors do

not overlap. Next their boundaries are covered by several  cells whose interiors do not



over lap and so back down to tie -cells. So, this is what the structure CW structure on . If

you change the integer , you will get a different structure on , okay? So, we refer to them

in short, as lattice structures on , okay? 
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So,  out  of  these,  you  can  get  several  interesting  examples  of  CW  complexes.  The  first

example is the following: Take a -cube  where  is between  and  (  equal to  is too

simple an example; it is just a singleton right? So, that is also a nice thing all right, but you

may assume ); this  should be a face of some -cube belonging to  for some r. So,

take a  a -cube, which is a face of some member of . 

Then  for  ,  each  CW structure   induces  an  obvious  subcomplex  structure  on (the

closure of)  . For example, suppose   is some edge in in  . then in  , this edge will get

divided into  edges, in , it will get divided into  edges and so on. Okay? You start with 

for  example,  an edge of  length  .  In   itself,  it  is  just  one single edge attached to two

vertices. In , it gets divided into  edges on three vertices. So, this way, you will get CW-

structures coming from  on each -cube of . The same holds a little more generally.  

Let us look at  okay? What is the ? Here  is any collection of collection of cells;

I am taking the union of all of them. For instance,   may have some points of  , some

edges,  some cubes then some higher dimensional  -cubes all belonging to  , where   is

fixed.  can be infinite also. Then each  will induce a CW structure on the , okay?

Why? On each of this cells, and on the intersection of any two cells, the two CW-structures



will be comparable, because the two CW-structures on the intersection will be comparable

because both of them belong to . So, this generalises the earlier example.
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A little more generally, let   be family of finitely many faces of  -cubes in  , of various

dimensions and various sizes. (  is fixed). Okay? Faces of -cubes of some , there may be

 dimension,  dimension,  dimensions and so on. Take all this, but finitely many of them.

Okay? So what I am doing here? Earlier, there was no restriction on the number of cells, but 

was fixed. Now, I am ranging  indefinitely, but I put a condition that the family  must be

finite, okay? Then   will again get a CW structure by some  . What is that  ? Any

number bigger than equal or equal to something that I have to tell you, namely, choose  to be

the maximum of all t such that one of the N cubes containing a member of F belongs to P t,

look at all the integers  such that there is a member of , which is a face of some member of

. This collection is finite because  is finite. So, take the maximum of this collection that

you call  . Then if   will divide all of them very nicely. That is the whole idea that

will give you a CW-structure  itself. 
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So, here is a picture of an  example. You see that I have divided all of them into squares of

smallest size. The actual squares from the collection  are shown by heavy lines here okay?

Union of this large square here this small square here, this square is that square small is  so,

you cut them like this. So, that will be CW structure on this entire union. It is very easy to see

okay begin a finite case very easy to see alright. 
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Slowly, we are going to build up on this theme, making it more and more meaningful and

more and more useful. For any -face sigma of a member , i.e., take a member of  and

then take a -face of that. And let  denote the set of all -faces of , , okay? But I do

not want to  take  -cells,  so,   Denote  this collection by  .  On  ,  take a

positive integer function  such that:



(i)  is bigger than equal to  for all , and

(ii)   is contained in  should imply   is bigger than or equal to  , i.e.,   is order

reversing, okay?... smaller the face, larger the integers that is what I want. Alright.

Take such a function . For each  in , give the CW-structure induced from , okay?

We claim that all these structures patch-up to define a CW-structure on .  is what?  is a -

face of some member of . Alright. So, on all faces of , we have a CW structure and these

together  define  a  CW-strucutre on   itself.  This structure  is  finer  than the CW structure

coming from . It will be denoted by 

In the interior of the -cell , we will have the CW-structure coming from , but for the

smaller faces  of , the division may be even finer because the numbers  are larger or  at

least that much. That is important okay? For instance, the subdivision on the boundary of a -

cell may be a pentagon or a hexagon or just a square okay? We can attach the -cell to get

topologically the same picture, yet the CW -structures may be different. So this is what you

have to keep in mind okay? So, we get a CW structure on sigma itself depending on this

function, the function should have these two properties that is all, okay? So, this is the germ

of this idea, how to how to cut a cell into a union of finer cells. This will be of some use soon.

(Refer Slide Time: 31:16)

So, we prove this by induction on . I have already explained that how it is working, the way

it  is  done,  this  is  what  you have to  understand,  to patch up CW-structures  for  the more



complicated spaces from that of simpler ones, okay? So, let us do it by induction on  is

what?  is the dimension of  itself. 

Suppose  that means,   is just a single point. Then there is nothing to do, a singleton

never gets divided at all, no matter what   you choose for it that is what one observation I

have made earlier, namely, once a point is in , it is there in  etc,  okay? So, the

case  is no problem. 

For , what does it means? It is an edge okay. So, what do you have to do? You have to

look at the -cells of that namely the two endpoints which will never get divided further, only

the interior gets divided depending upon what  you have chosen and that is all. So, there is

no trouble patching up the subdivisions of two such edges to the union, intersection of two

edges being either empty or a single point, the CW-structures coming from   on the two

edges simply gets extended on the union. Okay?

Now, assume the claim is true for , then we will do it for  okay. So, now  be a -

face of some member of , Okay? Well, the first thing to note is that the CW-structure  on

all the -faces  of , all -faces of  will patch up to a finite CW-structure on the boundary of

: suppose  and  are any two -faces of . Okay? Then their intersection may be empty or

maybe a single point or a -face , for some .  and  are -faces, their intersection 

has to be a -face of some lower dimension. In the first and second case, there is no problem.

In the last case, because of condition (ii),  is finer than the two CW-structures on  coming

from  and . Okay? Therefore, all these structures patch up to define a CW-structure on the

boundary of  itself and this structure is finer than the CW structure on  coming from .  

This implies that we can put them together  to obtain a CW structure  of  tau,  okay? This

completes the proof of the inductive step for  faces okay? Remember these things, we

will use them and we will try to do some examples of when we are taking in infinite families

of these 's. Okay, Thank you.


