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So, we would like to construct the CW-chain complex of a CW-complex. Let me recall what we

did the last time, which is a very crucial for this construction. So, it will be worthwhile to recall

the whole thing and also go through the proofs carefully. So, that you do not have any doubt left

there. So, let me begin with this lemma that we did.
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 is CW complex. Then for each   positive, we have the homology the  -th homology of the

pair   vanishes for  .  So, the homology is  atomised;  at one single   viz.,

 it is isomorphic to the free abelian group of rank equal to the number of -cells in . This

is a consequence of the previous lemma that we have done, I am summing it up here. The second

thing and third statements are slightly more elaborate and require some poof. Of course, they

follow from this one. 

So, the second statement is that   is  if . That means, if you have a CW complex

of dimension , then all the homology beyond  etc, they are all . 

The third statement is that the inclusion map, let us let us denoted by  from  into the whole

space  induces isomorphism in homology  to  for  and a surjection for . Ok?
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Let us look at the proofs. part (a) is actually a direct consequence of the previous lemma that we

have proved. Namely, if  you attach  -cells  to a space   to obtain  ,  then the relative  -th

homology is precisely equal to the free abelian group over the number of cells you have attached,

everywhere else    is  .  You apply this to the special  cases when   is   and

. Ok?

So, for (b) let us prove this by induction. Since  is a discrete space   is   for all  

positive. Therefore we can start the induction. Suppose it is true upto . Then you want to

prove it for , ok? Let . Then I want to show that  is . Right?

In the long homology exact sequence of the pair , for , we have 

and  are both 0 by induction hypotheses and (a). Therefore the term between

then viz.,  is also zero. Now to prove (c): what does (c) say? This inclusion from 

to the whole of space  induces isomorphism in  for  and surjection for , ok? this

is what we want to prove. 

(Refer Slide Time: 04:28)



First you assume  is finite dimensional, say, dimension of  is , if this , then the -th

skeleton is the whole of  and inclusion map is the identity map and there is nothing to prove,

ok? So, you may assume that  is smaller than  and  is a proper closed subset of ,  is

actually  , because dimension of   is  . ok? Then for each   and , we have an

inclusion needs to map from -th skeleton to -th skeleton. Ok?

Take composition of these inclusion to get the inclusion from  to . Ok? Since, all

the inclusion maps induce isomorphisms for   from (b). You have a composite of finitely

many isomorphisms. Ok?
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For  what happens? The very first one is not an isomorphism, but is surjective. After that,

all  other things are isomorphisms. Therefore the composite will be also surjective. Ok? That

takes care of the finite dimensional case. Ok? 
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Now  comes  the  infinite  dimensional  case.  Suppose   is  infinite  dimensional.  Suppose  the

inclusion indiced map  from  to  (for ) is not injective. (We want to

show that it is injective first of all, then we want to show that it is an isomorphism suppose it is

not injective) ok? Let  be a -cycle in  which is a boundary in . That is the meaning of

Say  is such that . But  is a finite linear combination of -singular

simplices, each of them is compact. So, the entire support of the chain   is a finite union of

compact sets. Therefore support of  is compact subset of . ok? A compact subset of any CW

complex is contained in a finite skeleton, ok? So it is contained in some  . alright? Now,

what does this mean? This means that this  is the boundary of , where  itself is in 

. This means that the inclusion map from  to  itself is not injective and that contradicts

whatever we have already proved. Ok? Therefore,  at the -th level is injective. 
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Exactly similarly, you can prove the subjectivity also for  . ok? The compactness of the

support of any chain allows us to pass from infinite dimensional case to finite dimensional case,

Ok? Now having recalled this one, we can now define the modules of the chain complex first

and then the boundary map also. Ok? So, let us have some elaborate notations here,  for this

particular  part  only,  we will  have  these  notations  fixed,  Ok? So   is  the inclusion induced

morphism for  to . Actually  is the inclusion map at the space level, but I

will denote the induced map at the homology also by , instead of going on writing the suffix

star and so on.

Similarly  let   be  the   inclusion  induced  homomorphism  from   to

, Ok? Think of   as the pair  . That admits an inclusion map

into the pair  , and   is the induced homomorphism at the homology level. So,

once you have this notation, just put the  -th (module or whatever just abelian) group of the

chain . Recall that this is actually a free abelian group over the

number of -cells attached to  to get .

And the boundary operator , where  itself is the connecting homomorphism in

the long homology exact  sequence of the pair,  . So   is a homomorphism of

degree ,  alright? What we have to verify? We have to verify that  is . Once you do

that this will be a chain complex. Ok? 
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So, the following lemma tells you   is   for all  . And hence, this becomes a chain

complex, ok? This chain complex is called the cellular chain complex associated to . So, we

will just write the superfix CW, both on the chain complex ans the associated homology which is

called the cellular homology of  and temporarily denoted by 

We will prove that this homology is the same as the singular homology of . And therefore you

will not need an extra notation for this one at all. You can directly use the singular homology and

its description provided by this theorem. Ok? The homology of this this chain complex is called

a cellular homology of . Alright.
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So, first let us prove that these composites are ;  is  is what we have to show. Ok?
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So, I have displayed here a commutative diagram from which all these things will become clear.

This is the diagram. Here, this horizontal sequence is the homology exact sequence of the pair

.  Only  a  relevant  portion  of  it  is  taken,  the  four  terms

 (this  is,  by  definition  ,  now)  and  then  the  connecting

homomorphism   to  . What is the term here? It is   which is   as

shown in the previous lemma.



So, these four terms are in this horizontal line. There are two vertical lines which are also coming

from homology exact sequence of the pairs,  and . The bottom )

corresponds to  and the top  corresponds to .  

By definition,  the  diagonal  sequence  is  a  part  of  our  .   to   to  ,  with

 and . Therefore the composite of these two homomorphisms is

nothing but start from here, go vertically down here and then go to the right twice and then go

down again to the right go to the right and come down. By the exactness of the horizontal line it

follows that this composite is zero;  because 
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Now next thing is to prove that the kernel of this by the image of that is actually isomorphic to

, ok? That is the statement here, right? . Now look at this one,

what is  ?   is  this composite  this,  I  am taking the kernel  of this  but  this is  an injective

mapping. Therefore kernel  of   is the same thing as kernel of  .  And kernel  of  ,  by the

horizontal exact sequence, is equal to image of . ok? Therefore my group on the left hand side

is the quotient of image of  by the image of , right? See,  is an injective mapping. Now

the  image  of   is  the  same  as  .  Therefore,   induces  an  isomorphism of

 with  . By the exactness  of the first vertical sequence, it

follows that the former group is isomorphic to  



So, I repeat, ...

So, those things form a chain  complex,  the homology of that  chain complex is  the singular

homology of  itself. ok? It is very easy to understand these chain modules you do not have to

work out all continuous functions so on. ok? So, this is quite similar to what we have done for

simplicial complexes,  the simplicial  homology.  Ok? But we had to work a little  harder  here

because we are not having the luxury of linear maps and so on. It is not just combinatorial, it is

not completely combinatorial  here.  It  retains  a  little bit of combinatorial nature of simplicial

complexes, but it combines a lot of topological information. The most difficult thing here is to

compute the boundary operators . The groups themselves are very easy to compute. 

The boundary operators are determined by the attaching maps, so that is still purely topological.

So, so you may say that is a catch. But even then it helps by bringing a lot of simplification from

the singular chain complex of an arbitrary topological space. Ok? 
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So, as an illustration let us study this example now, the homology of the complex project spaces.

We have already given the complex project space a CW structure consisting of one -cell, one -

cell, one -cell and so on, right? The odd dimensional cells are missing there, there are no odd

dimension cells, alright. And in each dimension, there is exactly one cell. So what does it tell?

One of the simplest thing is, more generally suppose that a CW complex  does not have any -



simplexes  for a  fixed  .   Then  .  Hence   is  also zero.  So, in  particular,

immediately you can tell that all the odd dimensional homology groups of   are all  . ok?

There is more to come, what happens is even dimensions? In fact look at the chain complex,

. How does it look like?

At , there is  cell, so it is , there is no -cell, so , there is one -cell that is why

 and so on. Alternatively you have   terms and infinite cyclic groups. Therefore all the

boundary maps are automatically  . ok? The kernels will be always the whole domain group,

which is alternatively  or . The images are always . Therefore the homology groups are  or 

alternatively. 
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So, to sum up, we have , if , and equal to  otherwise. A very neat result.
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In  order  to  exploit  cellular  homology  further,  we  should  try  to  understand  the  boundary

operators,  ok? So, here is a description, a complete description of it.  But I  do not  have any

examples  right  now to  illustrate  the  use  of  it.  My  examples  were  too  simple  like  complex

projective space or a sphere and so on. But we will have more examples when we study the lens

spaces. So let us make a preparation for that. Ok?
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Let  from  to  denote the collection of all characteristic maps of -

cells. Restricted to the boundary you will get the corresponding attaching maps 's. I am now

just writing  , for the group  , ok? it  is  ,  the relative homology,



which is freely generated over the basis   where  ’s are maps, so they can be thought of

singular -simplexes.

An  -chain will  be a  finite  linear  combination of  these things,  ok,  with integer  coefficients.

Therefore in order to determine  we have only to find what happens to  as an element in

. So, this codomain is again a free module over the characteristic maps of

-cells in .

So, let us denote the collection of all characteristic maps of -cells by .  Observe that

in the quotient space,  when you collapse the -th skeleton to a

single  point,  then  all  the  attaching  maps  of  -cells,  become  the  constant  function.

Therefore each cell  -cell will become a sphere, ok? The entire boundary of the -

cell,  is collapsed to a single point, which is the same for all . What is that single point? It

is the image of  , right? So, the quotient space looks like a bouquet of  -spheres,

. So, bouquet of spheres indexd by . Right?
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So, as you may recall from an earlier exercise, what is the homology of this bouquet? Of course

 is  ,  since   is  a  path  connected  space,  so   is  infinite  cyclic  and  all  other

homologies are  except  is again the free module over this indexing set . And

what are the generators? Take  which is infinite cyclic, take a generator  for it  and



take its image under the inclusion map  to  corresponding to the -th factor. Infact, if 

from   to   is the quotient map then   factors down to define a map   from

 to . You can take the collection  as a set of generators for .

Also note that the quotient map  induces an isomorphism of  with .  Both

of them are free abelian groups with bases indexed over the same set .

Now you look at the projection map  here from the bouquet  to one of the spheres ,

 is identity map restricted to the component  and is the constant map on all other spheres.

Ok? That is the projection map, ok? I am call them components or factors, because  can be

actually thought of as a subspace of the product of all these  indexed over . Details will

be left to you, Ok?

Then   is  anyway,  a  linear  combination of  these  's,  right? they are  generators.  So,

 (sum over ), where  are integers. Take the sum over all , but it is a

finite sum,  most of the ’s will be .

So, it looks like this, but we do not know what are these integers coefficients. However, what I

can tell  you now is  the following:  If  you take  ,  ok? Tthis  will  be  equal  to  ,  the

boundary of  , ok?   is the attaching map of the  -cell  . Therefore, what happens to  

under   is precisely what you have to understand. It  follows that the coefficients.   is

nothing but the degree of this , starting from  into  then followed by

the quotient map  and then followed by the projection  to the one single factor . 

So, computing degrees of some specific maps from  to  is the make thing that will help you

in understanding more complicated spaces such as CW-complexes. It will help you a little bit is

knowing the singular homology of CW complexes. So, we shall give an illustration of this in

computing the singular homology of lens spaces. That is our next topic. We shall do it next time,

Thank you.


