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Classification of CW-Chain Complex
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Module-36 Construction of CWschain complex

Mativated by the construction of the chain complex C{K) for a
smplicial complex K and the results ablained abowve, we now make
the following definition of a chain complex associated (o a
CW-complax
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So, we would like to construct the CW-chain complex of a CW-complex. Let me recall what we
did the last time, which is a very crucial for this construction. So, it will be worthwhile to recall
the whole thing and also go through the proofs carefully. So, that you do not have any doubt left
there. So, let me begin with this lemma that we did.
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Let X bea CWecomplex, Then flor sach iteger n > 0, we fave
{a) Hy(xlel xle ”] variishes for k # 0 and foe k=, it 1
ispmorplvg 0 the frie abelian group of rank egual o the number
of n-calls {n ,E'(
{B) H( X"} = [0).% = n
{€)] The melision mag il X1 — X induces isamorphiam in
homaiagy

Dale - LX) = 1y ()

for k < m and surfection for k = n

X is CW complex. Then for each n positive, we have the homology the k-th homology of the
pair (X (n) x ("_1)) vanishes for k& # n. So, the homology is atomised; at one single & viz.,
k = n, it is isomorphic to the free abelian group of rank equal to the number of n-cells in X. This
is a consequence of the previous lemma that we have done, I am summing it up here. The second
thing and third statements are slightly more elaborate and require some poof. Of course, they

follow from this one.

So, the second statement is that H, (X)) is 0 if & > n. That means, if you have a CW complex

of dimension n, then all the homology beyond n, H,, 11, H,, 1 etc, they are all 0.

The third statement is that the inclusion map, let us let us denoted by 7,, from X () into the whole

space X induces isomorphism in homology H}, to Hy for k£ < n and a surjection for £ = n. Ok?
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Proaf; [a} This is @ direct consoguenco of Lemma 4.6 [a)

(b} Since X b g discrote space. wi kaow Hy K"-':] (@) fer all
k = 0, Induictively let us assume that the statement (B) holds for
X110 Lot & = o, In the long exact sequence of (X171, X111

H (X1 —s H (XM} — Hi (X, (=1l

the forst veem o6 mer by inductaon and the thisd term s zera by (a)
Hence the meddie term 8 alss rera

?)

Let us look at the proofs. part (a) is actually a direct consequence of the previous lemma that we
have proved. Namely, if you attach n-cells to a space Y to obtain X, then the relative n-th
homology is precisely equal to the free abelian group over the number of cells you have attached,
everywhere else Hy(X,Y) is 0. You apply this to the special cases when Y is X (n=1) and
X =Xx™. 0k?

So, for (b) let us prove this by induction. Since X ©) s a discrete space Hy (X (0)) is O for all &
positive. Therefore we can start the induction. Suppose it is true upto n — 1. Then you want to

prove it for n, ok? Let k > n. Then I want to show that Hj (X (") s 0, Right?

In the long homology exact sequence of the pair (X ™, X"~V for k > 0, we have Hy,(X "~V
and Hy (X () X (=1 are both 0 by induction hypotheses and (a). Therefore the term between
then viz., Hy (X (")) is also zero. Now to prove (c): what does (c) say? This inclusion from X (n)
to the whole of space X induces isomorphism in Hj, for & < n and surjection for &k = n, ok? this
is what we want to prove.
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[e]) First, wer asssime that X i findte dimensional, gay, dim & « m
If o 2> m then X' = X and so there i nothing to pove. 5o we
may a8 well assume i< . Then for gach (> 0, and & < p, we
have, thé inclision induced map

MR ()

is an inamorphism (from (b) of the previows thearem)

)

First you assume X is finite dimensional, say, dimension of X is m, if this n > m, then the n-th
skeleton is the whole of X and inclusion map is the identity map and there is nothing to prove,
ok? So, you may assume that n is smaller than m and X (™ is a proper closed subset of X, X is
actually X (m), because dimension of X is m. ok? Then for each ¢ > 0 and k£ < n, we have an

inclusion needs to map from (n + ¢)-th skeleton to (n + i + 1)-th skeleton. Ok?

Take composition of these inclusion to get the inclusion from X ™ to X (™) = X. Ok? Since, all
the inclusion maps induce isomorphisms for k£ < n from (b). You have a composite of finitely
many isomorphisms. Ok?
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Composae of finitely many such somorphisars yields the
isamerphism

Citads o M XE) —a KXY = [ X)

Far & = m, this fails anly at the véry fird instance, vz

Hy [ KA i H.(X"' 1), Howswer, even here, the map i
surjechive. gnce the nest T the HQuence 1§

Holximtd xtob) = [0). Sinee the rest of the homemorphismd are
all ramoephis, it follows that (i), is surjective




For £ = n what happens? The very first one is not an isomorphism, but is surjective. After that,
all other things are isomorphisms. Therefore the composite will be also surjective. Ok? That
takes care of the finite dimensional case. Ok?
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Now sippose X |5 infinite dimersional. Suppose the inclision map
iy - &M == X indices a noreingectae homomonphism

My XY —s M X) For some k< a, Lot ¢ be a k-cyche in X1
which (& 3 boundary (i X say £ = (y, Siace v & a finite
coamibinaticn of (k + 1)-singular smplices, its mwppent & compact
Thargbors v & 3 [k 4 D)chain in 2 binete skoleton X'™ of X, This
means that Ml X" ] — H( X" is not insective, which is a
contradiction ta what we hiave proved above, in the fmite
dimensional case. This proves inmctivity. The prool of sarectivity

& sienilar and @asier L]

2]

Now comes the infinite dimensional case. Suppose X is infinite dimensional. Suppose the
inclusion indiced map (7,,), from Hj, (X ™) to Hj,(X) (for n > k) is not injective. (We want to
show that it is injective first of all, then we want to show that it is an isomorphism suppose it is

not injective) ok? Let ¢ be a k-cycle in X (™ which is a boundary in X. That is the meaning of
n:([e]) = 0.

Say y € Sk41(X) is such that 9(y) = c. But y is a finite linear combination of (k + 1)-singular
simplices, each of them is compact. So, the entire support of the chain y is a finite union of
compact sets. Therefore support of 4 is compact subset of X. ok? A compact subset of any CW
complex is contained in a finite skeleton, ok? So it is contained in some X (™). alright? Now,
what does this mean? This means that this c is the boundary of y, where y itself is in Sy 1 (X (m))
. This means that the inclusion map from X (") to X (™) jtself is not injective and that contradicts
whatever we have already proved. Ok? Therefore, 7. at the k-th level is injective.
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Let X be a CW-complex, For each m, let

i HA V) — L ) and o HXM) — Hy T8, ety

denote the inclusion nduced homamarphisms, Put

L',‘,“’[Jf,\ Hld?;'"'t. xin I:.]I d. Jnet B fi 2 1
whare o M X XY s (X020 g the connecting
hamamerphism (A the long exact sequands of the pai
(el xin=ly

U
Exactly similarly, you can prove the subjectivity also for £k = n. ok? The compactness of the
support of any chain allows us to pass from infinite dimensional case to finite dimensional case,
Ok? Now having recalled this one, we can now define the modules of the chain complex first
and then the boundary map also. Ok? So, let us have some elaborate notations here, for this
particular part only, we will have these notations fixed, Ok? So ¢, is the inclusion induced
morphism for H,,(X (")) to H, (X ("+1)). Actually i, is the inclusion map at the space level, but I
will denote the induced map at the homology also by 4, instead of going on writing the suffix

star and so on.

Similarly let j, be the inclusion induced homomorphism from H, (X (")) to
(H, (X™ (x™=1)) Ok? Think of X as the pair (X™,0). That admits an inclusion map
into the pair (X, X1, and j, is the induced homomorphism at the homology level. So,
once you have this notation, just put the n-th (module or whatever just abelian) group of the
chain CSW (X)) := H,(X™ X(=1) Recall that this is actually a free abelian group over the
number of n-cells attached to X ™1 to get X ™).

And the boundary operator d,, := j,_1 o d,, Where 9, itself is the connecting homomorphism in
the long homology exact sequence of the pair, (X™, X(~1) So d,, is a homomorphism of
degree —1, alright? What we have to verify? We have to verify that d,, o d,,+11s 0. Once you do
that this will be a chain complex. Ok?
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The fallowing lemma shows that g, 0 do.q = 0 for all o and hence
WX s a chain comples, The is called the oallular chain
coemples associated to X, The homolagy of this cham comple will
be called the celllar homalogy of X

)
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So, the following lemma tells you d,, o d, 1 is O for all n. And hence, this becomes a chain
complex, ok? This chain complex is called the cellular chain complex associated to X. So, we
will just write the superfix CW, both on the chain complex ans the associated homology which is

called the cellular homology of X and temporarily denoted by HEW (X).

We will prove that this homology is the same as the singular homology of X. And therefore you
will not need an extra notation for this one at all. You can directly use the singular homology and
its description provided by this theorem. Ok? The homology of this this chain complex is called
a cellular homology of X. Alright.
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Proal: In the cammatative diagram, (Fugure 18) the two wertical
sequences ant respectnly part of the evact SHEnCe of the pairs
(XA, 3 gad (X008 X1, wheneas the horizental
sequencs 1 that of (X1, X1V} In parvcidar, we have

A 0 Jip o 0 and hénce dy o dyy g = ey o feo jyodg,g =D [

£

b

So, first let us prove that these composites are 0; d? is 0 is what we have to show. Ok?
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Figiirm 18 Conitruction &f cellular homalagy
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So, I have displayed here a commutative diagram from which all these things will become clear.
This is the diagram. Here, this horizontal sequence is the homology exact sequence of the pair
(X x@=1) " Only a relevant portion of it is taken, the four terms
H,(X™), H,(X™, x™= 1) (this is, by definition CS", now) and then the connecting
homomorphism 6,, to H,,_1(X (“_1)). What is the term here? It is H,, (X ("_1)) which is 0 as

shown in the previous lemma.



So, these four terms are in this horizontal line. There are two vertical lines which are also coming
from homology exact sequence of the pairs, (X "1, X(™))and (X(»~Y X (=2 The bottom )
corresponds to H,, (X ™Y X (™)) and the top 0 corresponds to H,,_ (X "~2)),

By definition, the diagonal sequence is a part of our CV(X). C,11 to Cy, to C,,_y, With
dn+1 = Jn © Ops1 and d,, = j,,_1 0 J,,. Therefore the composite of these two homomorphisms is
nothing but start from here, go vertically down here and then go to the right twice and then go
down again to the right go to the right and come down. By the exactness of the horizontal line it

follows that this composite is zero; d,, © dy,+1 = jn—1 © O © jpn © 1 = 0 because 6, 0 j, = 0.
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Proal: Unce again we refer ta Figure 18, Observn that the
appasrance of tha thes rira praups (s justified by Lemma 4.2
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Now next thing is to prove that the kernel of this by the image of that is actually isomorphic to
H,(X), ok? That is the statement here, right? H,,(C°")(X) = H,,(X). Now look at this one,
what is d,,? d,, is this composite this, I am taking the kernel of this but this is an injective
mapping. Therefore kernel of d,, is the same thing as kernel of §,. And kernel of §,, by the
horizontal exact sequence, is equal to image of j,. ok? Therefore my group on the left hand side
is the quotient of image of j,, by the image of d,, 1, right? See, j, is an injective mapping. Now
the image of 0,11 is the same as j,(Im(d,1)). Therefore, j, induces an isomorphism of
H,(X)/Im(0,+1) with Im(j,)/Im(d,+1). By the exactness of the first vertical sequence, it
follows that the former group is isomorphic to H,, (X "*!) = H,(X).



So, I repeat, ...

So, those things form a chain complex, the homology of that chain complex is the singular
homology of X itself. ok? It is very easy to understand these chain modules you do not have to
work out all continuous functions so on. ok? So, this is quite similar to what we have done for
simplicial complexes, the simplicial homology. Ok? But we had to work a little harder here
because we are not having the luxury of linear maps and so on. It is not just combinatorial, it is
not completely combinatorial here. It retains a little bit of combinatorial nature of simplicial
complexes, but it combines a lot of topological information. The most difficult thing here is to

compute the boundary operators d,,. The groups themselves are very easy to compute.

The boundary operators are determined by the attaching maps, so that is still purely topological.
So, so you may say that is a catch. But even then it helps by bringing a lot of simplification from
the singular chain complex of an arbitrary topological space. Ok?
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Homology of CP”

An immediate cansequence of this theorem is that if 8 CWe-complex
X does ot have any cells of dimension ¥, then Hy (X ) = [0}, This
fact fies very neatly in computing the homology of complex
projective spaces. Recall that CP" has coll decompasition
conusting of ane call al dimension 2k for 0 < &k < n Therefiore the
cellular ehain eomplesc € (CF) Inoks ke

i B g b T Y g il = 1

with [ and & aceurring alternatively

F.':' T — T —————— T o)
So, as an illustration let us study this example now, the homology of the complex project spaces.
We have already given the complex project space a CW structure consisting of one O-cell, one 2-
cell, one 4-cell and so on, right? The odd dimensional cells are missing there, there are no odd
dimension cells, alright. And in each dimension, there is exactly one cell. So what does it tell?

One of the simplest thing is, more generally suppose that a CW complex X does not have any n-



simplexes for a fixed n. Then CS"W (X) = 0. Hence H,,(X) is also zero. So, in particular,
immediately you can tell that all the odd dimensional homology groups of CP™ are all 0. ok?
There is more to come, what happens is even dimensions? In fact look at the chain complex,

CW (CP™). How does it look like?

At 0, there is 1 cell, so it is Cy = Z, there is no 1-cell, so C'; = 0, there is one 2-cell that is why
C5 = 7Z and so on. Alternatively you have 0 terms and infinite cyclic groups. Therefore all the
boundary maps are automatically 0. ok? The kernels will be always the whole domain group,
which is alternatively O or Z. The images are always 0. Therefore the homology groups are 0 or Z
alternatively.
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with 0 and ¥ eecurring altermatively

Theretore

LB 5 i=2k 0Ck<n
(LB ] &
C U] () otherwise
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So, to sum up, we have H;(CP") = Z, if i = 2k, and equal to 0 otherwise. A very neat result.
(Refer Slide Time: 26:39)




In order to exploit the cellslar homology further, we should try ta
inderstand the boundary hamomarphisms o, of this chain
complex, Here s 3 deseription of o, in termelel the attching
maps of the CW-structure

In order to exploit cellular homology further, we should try to understand the boundary

operators, ok? So, here is a description, a complete description of it. But I do not have any

examples right now to illustrate the use of it. My examples were too simple like complex

projective space or a sphere and so on. But we will have more examples when we study the lens

spaces. So let us make a preparation for that. Ok?
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Lt i, ¢ (T07, S 0) e (X000, X00=10) denote the collocton of
characterstic mape of A-cells i X and bet £, : 5 1L, xta=1)
denote the comesponding attaching maps. Wi know that

Ca= Ha(XW, XN} iy frosty genavated over the clases i)
Tharelore, i order bo determme d, we have aaly 19 find
expressions for do{[a]) in Hyo (X171, X1020 S0, let us denote
the coflection of characteristic maps of (0= 1)-celfs by o,
Observe thai the guotient space ,l":" 1) yln=2) I hl’_urlul_'llhl;-';l|1||
to the bouguet of spheres (5

Let ¢ from (D", S"™1) to (X ™, X(™=1)) denote the collection of all characteristic maps of n-

cells. Restricted to the boundary you will get the corresponding attaching maps f,'s. I am now

just writing C,,, for the group CSW (X)), ok? it is H, (X, X™~1), the relative homology,



which is freely generated over the basis {¢, } where ¢,’s are maps, so they can be thought of

singular n-simplexes.

An n-chain will be a finite linear combination of these things, ok, with integer coefficients.
Therefore in order to determine d,, we have only to find what happens to d,, (¢, ) as an element in
H, (XY x(®=2) o, this codomain is again a free module over the characteristic maps of

(n — 1)-cells in X.

So, let us denote the collection of all characteristic maps of (n — 1)-cells by {¢)3}. Observe that
in the quotient space, Y, := X (n—1) /X (n=2) when you collapse the (n — 2)-th skeleton to a
single point, then all the attaching maps of (n — 1)-cells, become the constant function.
Therefore each cell (n — 1)-cell will become a sphere, ok? The entire boundary of the (n — 1)-
cell, S*~? is collapsed to a single point, which is the same for all 5. What is that single point? It
is the image of X("~2), right? So, the quotient space looks like a bouquet of (n — 1)-spheres,
S(B"_l). So, bouquet of spheres indexd by /3. Right?
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M, v is nothing but the degree of the map
r") Pt & Bang 0+ 51 s g0

So, as you may recall from an earlier exercise, what is the homology of this bouquet? Of course
Hy(Y,_1) is Z, since Y,, is a path connected space, so Hj is infinite cyclic and all other
homologies are 0 except H,,—1(Y,,—1) is again the free module over this indexing set {3}. And

what are the generators? Take H,,(S" ') which is infinite cyclic, take a generator g,,_ for it and



take its image under the inclusion map S" Y, corresponding to the -th factor. Infact, if ¢,,
from X" Y t0 Y, is the quotient map then ¢, —1 o 1)z factors down to define a map Q/NJ/; from
S"!to Y;,. You can take the collection {[1)5] = ¥, (gn_1)} as a set of generators for H,,_1(Yy,).
Also note that the quotient map ¢,,_ induces an isomorphism of C,,_; with H,,_;(Y,,—1). Both

of them are free abelian groups with bases indexed over the same set {3}.

Now you look at the projection map pp here from the bouquet Y,,—; to one of the spheres Sg_l,
Dg is identity map restricted to the component Sg_l and is the constant map on all other spheres.
Ok? That is the projection map, ok? I am call them components or factors, because Y,,_; can be
actually thought of as a subspace of the product of all these Sg_l indexed over {}. Details will
be left to you, Ok?

Then d,,[¢] is anyway, a linear combination of these [¢g]s, right? they are generators. So,
dn[da) = Z Na,s1a) (sum over B), where a5 are integers. Take the sum over all 3, but it is a

finite sum, most of the 1, g’s will be 0.

So, it looks like this, but we do not know what are these integers coefficients. However, what |
can tell you now is the following: If you take 9,,([t)o], ok? Tthis will be equal to [f,] the
boundary of ¢, ok? f, is the attaching map of the n-cell el,. Therefore, what happens to [f,]
under j,_ is precisely what you have to understand. It follows that the coefficients. NV, g is
nothing but the degree of this pg © ¢,,_1 0 fa, starting from S" ' into X (=1 then followed by

the quotient map ¢,,—; and then followed by the projection ps to the one single factor st

So, computing degrees of some specific maps from S" to S" is the make thing that will help you
in understanding more complicated spaces such as CW-complexes. It will help you a little bit is
knowing the singular homology of CW complexes. So, we shall give an illustration of this in
computing the singular homology of lens spaces. That is our next topic. We shall do it next time,

Thank you.



